Skip to main content
Log in

The oldest deep-boring bivalves? Evidence from the Silurian of Gotland (Sweden)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Compared to modern counterparts, bioerosion is rare in Paleozoic reefs, especially macro-bioerosion. The unique and enigmatic Silurian reefs from Gotland (Sweden), composed of bryozoans and microbial laminates, show evidence of a large amount of bioerosion. The samples contain Trypanites trace fossils, as well as a large number of undescribed macroborings. Small articulated bivalve shells are preserved in some of these macroborings, identified from thin-sections. Three-dimensional images from micro-computed tomography (microCT) reveal an additional bivalve, which is occupying a bioerosion trace. This specimen is possibly contained in a different boring that can be classified as possibly clavate-shaped. Furthermore, evidence of nestling, such as a subsequent modification of the ichnofossils, the presence of bivalves that are much smaller than the trace, or the presence of additional specimens, is missing; therefore, it is most likely that the bivalves made the borings. This is evidence for the existence of deep-boring bivalves in the Silurian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

He-Hemse, modified after Calner et al. (2004, fig. 2)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beuck L, Wisshak M, Munnecke A, Freiwald A (2008) A giant boring in a Silurian stromatoporoid analysed by computer tomography. Acta Palaeontol Poloni 53(1):149–160

    Article  Google Scholar 

  • Bromley RG (1972) On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläont Z 46(1/2):93–98

    Article  Google Scholar 

  • Bromley RG (2004) A stratigraphy of marine bioerosion. Geol Soc Lond Spec Publ 228(1):455–479

    Article  Google Scholar 

  • Bromley RG, Asgaard U (1993) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2:93–116

    Article  Google Scholar 

  • Buatois LA, Wisshak M, Wilson MA, Mángano MG (2017) Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth Sci Rev 164:102–181

    Article  Google Scholar 

  • Calner M, Jeppsson L, Munnecke A (2004) The Silurian of Gotland—part I: review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development. Erlanger Geol Abh Sonderbd 5:113–131

    Google Scholar 

  • Cramer BD, Loydell DK, Samtleben C, Munnecke A, Kaljo D, Männik P, Martma T, Jeppsson L, Kleffner MA, Barrick JE, Johnson CA, Emsbo P, Joachimski MM, Saltzman MR (2010a) Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (< 500 kyr) integrated conodont, graptolite, and carbon isotope (δ 13Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary: is a unified Phanerozoic timescale achievable? GSA Bull 122:1700–1716

    Article  Google Scholar 

  • Cramer BD, Kleffner MA, Brett CE, McLaughlin PI, Jeppsson L, Munnecke A, Samtleben C (2010b) Paleobiogeography, high-resolution stratigraphy, and the future of Paleozoic biostratigraphy: fine-scale biostratigraphic diachroneity of the wenlock (Silurian) conodont Kockelella walliseri. Palaeogeogr Palaeoclimatol Palaeoecol 294:232–241

    Article  Google Scholar 

  • Donovan SK (2018) Ewin TAM (2018) substrate is a poor ichnotaxobase: a new demonstration. Swiss J Palaeontol 137:103–107

    Article  Google Scholar 

  • Donovan SK, Fearnhead FE (2016) Cramped conditions: palaeontological implications of recent borings in a chalk cobble. Depos Mag 45:48–49

    Google Scholar 

  • Ekdale AA, Bromley RG (2001) Bioerosional innovation for living in carbonate hardgrounds in the early Ordovician of Sweden. Lethaia 34:1–12

    Article  Google Scholar 

  • Ernst A, Munnecke A, Oswald I (2015) Exceptional bryozoan assemblage of a microbial-dominated reef from the early wenlock of Gotland, Sweden. GFF 137(2):102–125

    Article  Google Scholar 

  • Galinou-Mitsoudi S, Sinis AI (1995) Age and growth of Lithophaga lithophaga (Linnaeus, 1758) (Bivalvia:Mytilidae), based on annual growth lines in the shell. J Molluscan Stud 61:435–453

    Article  Google Scholar 

  • James NP, Kobluk DR, Pemberton SG (1977) The oldest macroborers: lower Cambrian of Labrador. Science 197:980–983

    Article  Google Scholar 

  • Kelly SRA, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807

    Google Scholar 

  • Kleemann KH (1980) Boring bivalves and their host corals from the Great Barrier Reef. J Molluscan Stud 46:13–54

    Google Scholar 

  • Kleemann KH (1996) Biocorrosion by bivalves. P.S.Z.N. I. Mar Ecol 17:145–158

    Article  Google Scholar 

  • Kobluk DR (1981) Middle Ordovician (Chazy group) cavity-dwelling boring sponges. Can J Earth Sci 18(6):1101–1108

    Article  Google Scholar 

  • Leymerie A (1842) Suite de mémoire sur le terrain Crétace du département de l’Albe. Mem Soc Geol France, 1re série 4:1–34

  • Mägdefrau K (1932) Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläont Z 14:150–160

    Article  Google Scholar 

  • Newall G (1970) A symbiotic relationship between Lingula and the coral Heliolites in the Silurian. Geol J Spec Issue 3:335–344

    Google Scholar 

  • Nield EW (1984) The boring of Silurian Stromatoporoids—towards an understanding of larval behaviour in the Trypanites organism. Palaeogeogr Palaeoclimatol Palaeoecol 48:229–243

    Article  Google Scholar 

  • Oswald I (2010) Microfacies analysis of a peculiar reef in the Silurian Tofta formation on Gotland, Sweden, unpublished diploma thesis, University Erlangen

  • Palinska KA, Scholz J, Sterflinger K, Gerdees G, Bone Y (1999) Microbial mats associated with bryozoans (Coorong Lagoon, South Australia). Facies 41:1–14

    Article  Google Scholar 

  • Pisera A (1987) Boring and nestling organisms from the upper Jurassic coral colonies from northern Poland. Acta Palaeontol 32(1/2):83–104

    Google Scholar 

  • Pojeta J Jr, Palmer TJ (1976) The origin of rock boring in mytilacean pelecypods. Alcheringa 1:167–179

    Article  Google Scholar 

  • Richards RP, Dyson-Cobb M (1976) A Lingula-Heliolites association from the Silurian of Gotland, Sweden. J Paleontol 50(5):858–864

    Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Puga-Bernabéu Á (2015) Borings in gneiss boulders in the Miocene (upper Tortonian) of the Sorbas Basin, SE Spain. Geol Mag 152(2):287–297

    Article  Google Scholar 

  • Savazzi E (2005) The function and evolution of lateral asymmetry in boring endolithic bivalves. Paleontol Res 9(2):169–187

    Article  Google Scholar 

  • Scholz J, Krumbein WE (1996) Microbial mats and biofilms associated with bryozoans. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. National Institute of Water and Atmospheric Research, Wellington, pp 283–298

    Google Scholar 

  • Solem A (1954) Living species of the pelecypod family Trapeziidae. Proc Malacol Soc Lond 31:64–84

    Google Scholar 

  • Stearley RF, Ekdale AA (1989) Modern marine bioerosion by macroinvertebrates, northern Gulf of California. Palaios 4(5):453–467

    Article  Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62(1–2):1–103

    Article  Google Scholar 

  • Vogel K (1993) Bioeroders in fossil reefs. Facies 28:109–114

    Article  Google Scholar 

  • Wilson MA (1986) Coelobites and spatial refuges in a lower Cretaceous cobble-dwelling hardground fauna. Palaeontology 29:691–703

    Google Scholar 

  • Wilson MA (2007) Macroborings and the evolution of marine bioerosion. In: Miller W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 350–360

    Google Scholar 

  • Wilson MA, Palmer TJ (1988) Nomenclature of bivalve boring from the upper Ordovician of the Midwestern United States. J Paleontol 72:769–772

    Article  Google Scholar 

  • Wilson MA, Palmer TJ (1998) The earliest Gastrochaenolites (early Pennsylvanian, Arkansas, USA): an upper Palaeozoic bivalve boring? J Paleontol 72(4):762–772

    Article  Google Scholar 

  • Uchman A, Wisshak, M., Rodríguez-Tovar FJ (2018) The bivalve boring Cuenulites amygdaloides nov. isp. in siliceous sponges from the upper Cretaceous of Germany. Geobios 51(5):481–486

    Article  Google Scholar 

  • Wisshak M, Titschack J, Kahl WA, Girod P (2017) Classical and new bioerosion trace fossils in Cretaceous belemnite guards characterised via micro-CT. Foss Rec 20:179–199

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Birgit-Leipner-Mater for preparation of thin-sections, to Christian Schulbert for the microCT measurements, to Lucas Wilke for three-dimensional reconstruction, and to Max Wisshak for sending us the preprint of his recent review on bioerosion taxonomy (this volume). The authors thank Michael Joachimski and his team for the rapid stable isotope measurements. Additional thanks are addressed to Steve Donovan and Francisco Rodríguez-Tovar for their helpful review and comments. The study was supported by the Deutsche Forschungsgemeinschaft (DFG; project MU 2352/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lene Claussen.

Additional information

This article is part of a Topical Collection in Facies on Bioerosion: An interdisciplinary approach, guest edited by Ricci, Uchman, and Wisshak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claussen, A.L., Munnecke, A., Wilson, M.A. et al. The oldest deep-boring bivalves? Evidence from the Silurian of Gotland (Sweden). Facies 65, 26 (2019). https://doi.org/10.1007/s10347-019-0570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-019-0570-7

Keywords

Navigation