, 65:26 | Cite as

The oldest deep-boring bivalves? Evidence from the Silurian of Gotland (Sweden)

  • Anna Lene ClaussenEmail author
  • Axel Munnecke
  • Mark A. Wilson
  • Irina Oswald
Original Article
Part of the following topical collections:
  1. Bioerosion: An interdisciplinary approach


Compared to modern counterparts, bioerosion is rare in Paleozoic reefs, especially macro-bioerosion. The unique and enigmatic Silurian reefs from Gotland (Sweden), composed of bryozoans and microbial laminates, show evidence of a large amount of bioerosion. The samples contain Trypanites trace fossils, as well as a large number of undescribed macroborings. Small articulated bivalve shells are preserved in some of these macroborings, identified from thin-sections. Three-dimensional images from micro-computed tomography (microCT) reveal an additional bivalve, which is occupying a bioerosion trace. This specimen is possibly contained in a different boring that can be classified as possibly clavate-shaped. Furthermore, evidence of nestling, such as a subsequent modification of the ichnofossils, the presence of bivalves that are much smaller than the trace, or the presence of additional specimens, is missing; therefore, it is most likely that the bivalves made the borings. This is evidence for the existence of deep-boring bivalves in the Silurian.


Bioerosion Endolithic bivalves Paleozoic Reefs Bryozoans Tofta Formation 



The authors are grateful to Birgit-Leipner-Mater for preparation of thin-sections, to Christian Schulbert for the microCT measurements, to Lucas Wilke for three-dimensional reconstruction, and to Max Wisshak for sending us the preprint of his recent review on bioerosion taxonomy (this volume). The authors thank Michael Joachimski and his team for the rapid stable isotope measurements. Additional thanks are addressed to Steve Donovan and Francisco Rodríguez-Tovar for their helpful review and comments. The study was supported by the Deutsche Forschungsgemeinschaft (DFG; project MU 2352/5-1).


  1. Beuck L, Wisshak M, Munnecke A, Freiwald A (2008) A giant boring in a Silurian stromatoporoid analysed by computer tomography. Acta Palaeontol Poloni 53(1):149–160CrossRefGoogle Scholar
  2. Bromley RG (1972) On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläont Z 46(1/2):93–98CrossRefGoogle Scholar
  3. Bromley RG (2004) A stratigraphy of marine bioerosion. Geol Soc Lond Spec Publ 228(1):455–479CrossRefGoogle Scholar
  4. Bromley RG, Asgaard U (1993) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2:93–116CrossRefGoogle Scholar
  5. Buatois LA, Wisshak M, Wilson MA, Mángano MG (2017) Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth Sci Rev 164:102–181CrossRefGoogle Scholar
  6. Calner M, Jeppsson L, Munnecke A (2004) The Silurian of Gotland—part I: review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development. Erlanger Geol Abh Sonderbd 5:113–131Google Scholar
  7. Cramer BD, Loydell DK, Samtleben C, Munnecke A, Kaljo D, Männik P, Martma T, Jeppsson L, Kleffner MA, Barrick JE, Johnson CA, Emsbo P, Joachimski MM, Saltzman MR (2010a) Testing the limits of Paleozoic chronostratigraphic correlation via high-resolution (< 500 kyr) integrated conodont, graptolite, and carbon isotope (δ 13Ccarb) biochemostratigraphy across the Llandovery-Wenlock (Silurian) boundary: is a unified Phanerozoic timescale achievable? GSA Bull 122:1700–1716CrossRefGoogle Scholar
  8. Cramer BD, Kleffner MA, Brett CE, McLaughlin PI, Jeppsson L, Munnecke A, Samtleben C (2010b) Paleobiogeography, high-resolution stratigraphy, and the future of Paleozoic biostratigraphy: fine-scale biostratigraphic diachroneity of the wenlock (Silurian) conodont Kockelella walliseri. Palaeogeogr Palaeoclimatol Palaeoecol 294:232–241CrossRefGoogle Scholar
  9. Donovan SK (2018) Ewin TAM (2018) substrate is a poor ichnotaxobase: a new demonstration. Swiss J Palaeontol 137:103–107CrossRefGoogle Scholar
  10. Donovan SK, Fearnhead FE (2016) Cramped conditions: palaeontological implications of recent borings in a chalk cobble. Depos Mag 45:48–49Google Scholar
  11. Ekdale AA, Bromley RG (2001) Bioerosional innovation for living in carbonate hardgrounds in the early Ordovician of Sweden. Lethaia 34:1–12CrossRefGoogle Scholar
  12. Ernst A, Munnecke A, Oswald I (2015) Exceptional bryozoan assemblage of a microbial-dominated reef from the early wenlock of Gotland, Sweden. GFF 137(2):102–125CrossRefGoogle Scholar
  13. Galinou-Mitsoudi S, Sinis AI (1995) Age and growth of Lithophaga lithophaga (Linnaeus, 1758) (Bivalvia:Mytilidae), based on annual growth lines in the shell. J Molluscan Stud 61:435–453CrossRefGoogle Scholar
  14. James NP, Kobluk DR, Pemberton SG (1977) The oldest macroborers: lower Cambrian of Labrador. Science 197:980–983CrossRefGoogle Scholar
  15. Kelly SRA, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807Google Scholar
  16. Kleemann KH (1980) Boring bivalves and their host corals from the Great Barrier Reef. J Molluscan Stud 46:13–54Google Scholar
  17. Kleemann KH (1996) Biocorrosion by bivalves. P.S.Z.N. I. Mar Ecol 17:145–158CrossRefGoogle Scholar
  18. Kobluk DR (1981) Middle Ordovician (Chazy group) cavity-dwelling boring sponges. Can J Earth Sci 18(6):1101–1108CrossRefGoogle Scholar
  19. Leymerie A (1842) Suite de mémoire sur le terrain Crétace du département de l’Albe. Mem Soc Geol France, 1re série 4:1–34Google Scholar
  20. Mägdefrau K (1932) Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläont Z 14:150–160CrossRefGoogle Scholar
  21. Newall G (1970) A symbiotic relationship between Lingula and the coral Heliolites in the Silurian. Geol J Spec Issue 3:335–344Google Scholar
  22. Nield EW (1984) The boring of Silurian Stromatoporoids—towards an understanding of larval behaviour in the Trypanites organism. Palaeogeogr Palaeoclimatol Palaeoecol 48:229–243CrossRefGoogle Scholar
  23. Oswald I (2010) Microfacies analysis of a peculiar reef in the Silurian Tofta formation on Gotland, Sweden, unpublished diploma thesis, University ErlangenGoogle Scholar
  24. Palinska KA, Scholz J, Sterflinger K, Gerdees G, Bone Y (1999) Microbial mats associated with bryozoans (Coorong Lagoon, South Australia). Facies 41:1–14CrossRefGoogle Scholar
  25. Pisera A (1987) Boring and nestling organisms from the upper Jurassic coral colonies from northern Poland. Acta Palaeontol 32(1/2):83–104Google Scholar
  26. Pojeta J Jr, Palmer TJ (1976) The origin of rock boring in mytilacean pelecypods. Alcheringa 1:167–179CrossRefGoogle Scholar
  27. Richards RP, Dyson-Cobb M (1976) A Lingula-Heliolites association from the Silurian of Gotland, Sweden. J Paleontol 50(5):858–864Google Scholar
  28. Rodríguez-Tovar FJ, Uchman A, Puga-Bernabéu Á (2015) Borings in gneiss boulders in the Miocene (upper Tortonian) of the Sorbas Basin, SE Spain. Geol Mag 152(2):287–297CrossRefGoogle Scholar
  29. Savazzi E (2005) The function and evolution of lateral asymmetry in boring endolithic bivalves. Paleontol Res 9(2):169–187CrossRefGoogle Scholar
  30. Scholz J, Krumbein WE (1996) Microbial mats and biofilms associated with bryozoans. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. National Institute of Water and Atmospheric Research, Wellington, pp 283–298Google Scholar
  31. Solem A (1954) Living species of the pelecypod family Trapeziidae. Proc Malacol Soc Lond 31:64–84Google Scholar
  32. Stearley RF, Ekdale AA (1989) Modern marine bioerosion by macroinvertebrates, northern Gulf of California. Palaios 4(5):453–467CrossRefGoogle Scholar
  33. Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62(1–2):1–103CrossRefGoogle Scholar
  34. Vogel K (1993) Bioeroders in fossil reefs. Facies 28:109–114CrossRefGoogle Scholar
  35. Wilson MA (1986) Coelobites and spatial refuges in a lower Cretaceous cobble-dwelling hardground fauna. Palaeontology 29:691–703Google Scholar
  36. Wilson MA (2007) Macroborings and the evolution of marine bioerosion. In: Miller W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 350–360Google Scholar
  37. Wilson MA, Palmer TJ (1988) Nomenclature of bivalve boring from the upper Ordovician of the Midwestern United States. J Paleontol 72:769–772CrossRefGoogle Scholar
  38. Wilson MA, Palmer TJ (1998) The earliest Gastrochaenolites (early Pennsylvanian, Arkansas, USA): an upper Palaeozoic bivalve boring? J Paleontol 72(4):762–772CrossRefGoogle Scholar
  39. Uchman A, Wisshak, M., Rodríguez-Tovar FJ (2018) The bivalve boring Cuenulites amygdaloides nov. isp. in siliceous sponges from the upper Cretaceous of Germany. Geobios 51(5):481–486CrossRefGoogle Scholar
  40. Wisshak M, Titschack J, Kahl WA, Girod P (2017) Classical and new bioerosion trace fossils in Cretaceous belemnite guards characterised via micro-CT. Foss Rec 20:179–199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GeoZentrum Nordbayern, Fachgruppe Paläoumwelt, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
  2. 2.Department of Earth SciencesThe College of WoosterWoosterUSA

Personalised recommendations