Advertisement

Facies

, 65:18 | Cite as

Study of the euendolithic activity of black meristematic fungi isolated from a marble statue in the Quirinale Palace’s Gardens in Rome, Italy

  • Filomena De LeoEmail author
  • Federica Antonelli
  • Anna Maria Pietrini
  • Sandra Ricci
  • Clara Urzì
Original Article
Part of the following topical collections:
  1. Bioerosion: An interdisciplinary approach

Abstract

The present study analyzed the dark patina present on the surface of a marble statue exposed in the Gardens of the Quirinal Palace in Rome, with a special focus on euendolithic black meristematic fungi. The study of the spatial distribution of microorganisms and their identification were performed by using a multistep approach based on microscopy, cultural analyses, molecular techniques, and embedding resin-casting technique. Black meristematic fungi were observed in the patina. Since morphological features are not sufficient to identify fungi belonging to this group, cultural and molecular analyses were performed. The results highlighted the presence of the species Coniosporium apollinis and of strains related to the genus Knufia (order of Chaetothyriales). The resin-casting embedding technique demonstrated the active penetration of these fungi into the marble grains, thus documenting their true endolithic behavior. The involvement of phototrophic microorganisms present on the surface in the active penetration of the marble was excluded.

Keywords

Resin embedding-casting technique Bioerosion Euendolithic fungi MCF Coniosporium apollinis Knufia 

Notes

Acknowledgements

The authors wish to thank Prof. Stjepko Golubić, an anonymous reviewer, and Dr. Max Wisshak, Guest Editor of the Facies Special Issue Bioerosion: An interdisciplinary approach, for their precious corrections and suggestions. We also thank Mrs. Sherron Collins for her careful revision of the English text. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. Anagnostidis K, Economou-Amilli A, Roussomoustakaki M (1983) Epilithic and chasmolithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia 38:227–287Google Scholar
  2. Butin H, Pehl L, de Hoog GS, Wollenzien U (1996) Trimmatostroma abietis sp. nov. (Hyphomycetes) and related species. A van Leeuw J Microb 69:203–209CrossRefGoogle Scholar
  3. Caneva G, Nugari MP, Ricci S, Salvadori O (1995) Pitting of marble Roman monuments and the related microflora. In: Proceedings of the Eighth Int Congr Deterior Conserv Stone, LNEC, Lisbon, pp 521–530Google Scholar
  4. de Hoog GS, Zalar P, Urzì C, De Leo F, Yurlva NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA comparison. Stud Mycol 43:31–37Google Scholar
  5. De Leo F, Urzì C (2015) Microfungi from deteriorated materials of cultural heritage. In: Misra JK, Tewari JP, Deshmukh SK, Vágvölgyi C (eds) Fungi from different substrates. CRC Press, Boca Raton, pp 144–158Google Scholar
  6. De Leo F, Criseo G, Urzì C (1996) Impact of surrounding vegetation and soil on the colonization of marble statues by dematiaceous fungi. In: Proceedings of the eighth international congress on deterioration and conservation of stone, pp 625–630Google Scholar
  7. De Leo F, Urzì C, de Hoog GS (1999) Two Coniosporium species from rock surfaces. Stud Mycol 43:70–79Google Scholar
  8. De Leo F, Urzì C, de Hoog GS (2003) A new meristematic fungus, Pseudotaeniolina globosa. A van Leeuw J Microb 83:351–360CrossRefGoogle Scholar
  9. De los Ríos A, Cámara B, del CUra MAG, Rico VJ, Galván V, Ascaso C (2009) Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain). Sci Total Environ 407:1123–1134.  https://doi.org/10.1016/j.scitotenv.2008.09.042 CrossRefGoogle Scholar
  10. Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjevski S (1995) Black fungi in marble and limestones—an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167:295–304CrossRefGoogle Scholar
  11. Dornieden T, Gorbushina AA, Krumbein WE (2000) Patina: physical and chemical interactions of sub-aerial biofilms with objects of art. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Academic/Plenum Publishing Co. Ltd., New York, pp 105–120CrossRefGoogle Scholar
  12. Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, de Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothidemycetes based on multi-locus phylogenies. Fungal Divers 65:127–165CrossRefGoogle Scholar
  13. Favero-Longo SE, Gazzano C, Girlanda M, Castelli D, Tretiach M, Baiocchi C, Piervittori R (2011) Physical and chemical deterioration of silicate and carbonate rocks by meristematic microcolonial fungi and endolithic lichens (Chaetothyriomycetidae). Geomicrobiol J 28:732–744CrossRefGoogle Scholar
  14. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49.  https://doi.org/10.1016/j.mycres.2006.12.001 CrossRefGoogle Scholar
  15. Golubić S, Brent G, Le Campion T (1970) Scanning electron microscopy of endholithic algae and fungi using a multipurpose casting embedding technique. Lethaia 3:157–161CrossRefGoogle Scholar
  16. Golubić S, Pietrini AM, Ricci S (2015) Euendolithic activity of the cyanobacterium Chroococcus lithophilus Erc. in biodeterioration of the pyramid of Caius Cestius, Rome, Italy. Int Biodeter Biodegr 100:7–16CrossRefGoogle Scholar
  17. Gorbushina AA (2003) Microcolonial fungi: survival potential of terrestrial vegetative structures. Astrobiology 3:543–554.  https://doi.org/10.1089/153110703322610636 CrossRefGoogle Scholar
  18. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631.  https://doi.org/10.1111/j.1462-2920.2007.01301.x CrossRefGoogle Scholar
  19. Gorbushina AA, Krumbein WE, Hamman CH, Panina LKSS, Wollenzien U (1995) Role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221.  https://doi.org/10.1080/01490459309377952 CrossRefGoogle Scholar
  20. Isola D, Zucconi L, Onofri S, Caneva G, de Hoog S, Selbmann L (2015) Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers 76:75–96.  https://doi.org/10.1007/s13225-015-0342-9 CrossRefGoogle Scholar
  21. Marvasi M, Donnarumma F, Frandi A, Mastromei G, Sterflinger K, Tiano P, Perito B (2012) Black microcolonial fungi as deteriogens of two famous marble statues in Florence, Italy. Int Biodeterior Biodegrad 68:36–44CrossRefGoogle Scholar
  22. Möller EM, Bahnweg G, Sandermann H, Geiger H (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acid Res 20:6115–6116CrossRefGoogle Scholar
  23. Municchia AC, Percario Z, Caneva G (2014) Detection of endolithic spatial distribution in marble stone. J Microsc 256:37–45.  https://doi.org/10.1111/jmi.12155 CrossRefGoogle Scholar
  24. Pinna D (2017) Coping with biological growth on stone heritage objects. Apple Academic Press Inc, Oakville p 359. ISBN:978-1-77188-532-4Google Scholar
  25. Ricci S, Pietrini A, Bartolini M, Sacco Perasso C (2013) Role of the microboring marine organisms in the deterioration of archaeological submerged lapideous artifacts (Baia, Naples, Italy). Int Biodeterior Biodegrad 82:199–206CrossRefGoogle Scholar
  26. Ruffolo S, De Leo F, Ricca M, Arcudi A, Bruno L, Urzì C, La Russa M (2017) Medium term in situ experiment by using organic biocides and titanium dioxide for the mitigation of microbial colonization of stone surfaces. Int Biodeterior Biodegrad 123:17–26.  https://doi.org/10.1016/jbiod.2017.05.016 CrossRefGoogle Scholar
  27. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133.  https://doi.org/10.3114/sim.2009.64.06 CrossRefGoogle Scholar
  28. Salvadori O, Municchia AC (2016) The role of fungi and lichens in the biodeterioration of stone monuments. The Open Conf Proceed J 7:39–54.  https://doi.org/10.2174/2210289201607020039 CrossRefGoogle Scholar
  29. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic Desert. Stud Mycol 51:1–32Google Scholar
  30. Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: Three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20.  https://doi.org/10.3114/sim.2008.61.01 CrossRefGoogle Scholar
  31. Sert HB, Sümbül H, Sterflinger K (2007) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). A van Leeuw J Microb 91:217–227CrossRefGoogle Scholar
  32. Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants of desert rocks? Science 215:1093–1095CrossRefGoogle Scholar
  33. Sterflinger K (2000) Fungi as geological agents. Geomicrobiol J 17:24–97.  https://doi.org/10.1080/01490450050023791 CrossRefGoogle Scholar
  34. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55.  https://doi.org/10.1016/j.fbr.2010.03.003 CrossRefGoogle Scholar
  35. Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J 14:219–230CrossRefGoogle Scholar
  36. Sterflinger K, De Baere R, de Hoog GS, De Wachter R, Krumbein WE, Haase G (1997) Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). A van Leeuw J Microb 72(4):349–363CrossRefGoogle Scholar
  37. Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5:453–462CrossRefGoogle Scholar
  38. Teixeira MM, Moreno LF, Stielow BJ, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, Patan JSL, Priest M, Souza R, Young S, Ferreira KS, Zeng Q, da Cunha MML, Gladki A, Barker B, Vicente VA, de Souza EM, Almeida S, Henrissat B, Vasconcelos ATR, Deng S, Voglmayr H, Moussa TAA, Gorbushina A, Felipe MSS, Cuomo CA, de Hoog GS (2017) Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud Mycol 86:1–28.  https://doi.org/10.1016/j.simyco.2017.01.001 CrossRefGoogle Scholar
  39. Urzì C (2004) Microbial deterioration of rocks and marble monuments of the Mediterranean Basin: a review. Corros Rev 22:441–457.  https://doi.org/10.1515/CORRREV.2004.22.5-6.44 CrossRefGoogle Scholar
  40. Urzì C, De Leo F, de Hoog GS, Sterflinger K (2000) Recent advances in the molecular biology and ecophysiology of meristematic stone-inhabiting fungi. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. Kluwer Academic/Plenum Publishing Co. Ltd., New York, pp 3–19CrossRefGoogle Scholar
  41. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  42. Wollenzien U, de Hoog GS, Krumbein WE, Urzí C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Tot Environ 167:287–294CrossRefGoogle Scholar
  43. Wollenzien U, de Hoog GS, Krumbein WE, Uijthof JMJ (1997) Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean Basin. A van Leeuw J Microb 71:281–288CrossRefGoogle Scholar
  44. Zakharova K, Tesei D, Marzban G, Dijksterhuis J, Wyatt T, Sterflinger K (2013) Microcolonial fungi on rocks: a life in constant drought? Mycopathologia 175:537–547.  https://doi.org/10.1007/s11046-012-9592-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
  2. 2.Department of Innovation of Biological Systems, Food and Forestry (DIBAF)Tuscia UniversityViterboItaly
  3. 3.Biology LaboratoryISCR, Istituto Superiore per la Conservazione e per il Restauro (ISCR)RomeItaly

Personalised recommendations