Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The role of polychaetes in bioerosion of submerged mosaic floors in the Underwater Archaeological Park of Baiae (Naples, Italy)

  • 113 Accesses

  • 1 Citations

Abstract

The study investigated the role of boring polychaetes in the bioerosion of a submerged Roman mosaic floor in the Underwater Archaeological Park of Baiae (Naples, Italy). Three boring species, Dodecaceria concharum, Polydora ciliata, and Pseudopolydora antennata, were found. The initial colonization phases of boring polychaetes were investigated on experimental limestone panels placed underwater in the same marine area. The results showed that the ecological succession was characterized by a first stage of colonization with abundant spionids and a second stage with a boring mature community dominated by D. concharum. The study of silicone casts of the bored traces allowed confirmation that the ichnospecies belonging to the ichnogeneraMaeandropolydora could be attributed to the action of spionid worms, whereas D. concharum is able to produce tongue- and ribbon-shaped borings (ichnogenus Caulostrepsis), and variously contorted galleries (ichnogenus Maeandropolydora) by settling inside borings produced by other polychaetes and increasing the complexity of the gallery system by modifying them. The study of the epilithic polychaete community highlighted that the site is characterized by a low hydrodynamism. Therefore, the most suitable in situ preservation interventions would be the covering of the mosaics with sand layers or geotextiles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aitken AE, Risk MJ (1988) Biotic interactions revealed by macroborings in arctic bivalve molluscs. Lethaia 21:250–339

  2. Antonelli F, Perasso CS, Ricci S, Petriaggi BD (2015a) Impact of the sipunculan Aspidosiphon muelleri Diesing, 1851 on calcareous underwater cultural heritage. Int Biodeterior Biodegrad 100:133–139. https://doi.org/10.1016/j.ibiod.2015.02.025

  3. Antonelli F, Ricci S, Sacco Perasso C et al (2015b) Utilizzo di fronde artificiali per la protezione in situ di siti archeologici sommersi: studio dell’efficacia e della colonizzazione biologica. In: II Convegno tematico biologia e biotecnologie per i beni culturali. “Biologia e Archeobiologia: dalla Conoscenza alla Conservazione Preventiva.” Palermo

  4. Blake JA (1969) Systematics and ecology of shell-boring polychaetes from New England. Am Zool 9:813–820

  5. Blake JA (1973) Polydora and related genera as borers in mollusk shells and other calcareous substrates. Veliger 15:235–249

  6. Bonifazi A, Ventura D, Gravina MF et al (2017) Unusual algal turfs associated with the Rhodophyta Phyllophora crispa: benthic assemblages along a depth gradient in the central Mediterranean Sea. Estuar Coast Shelf Sci 185:77–93

  7. Bromley RG (2004) A stratigraphy of marine bioerosion. Geol Soc Lond Spec Publ 228:455–479

  8. Bromley RG, D’Alessandro A (1983) Bioerosion in the Pleistocene of southern Italy: ichnogenera Caulostrepsis andMaeandropolydora. Riv Ital di Paleontol e Stritigrafia 89:283–309

  9. Bromley R, D’Alessandro A (1987) Bioerosion of the Plio-Pleistocene transgression of southern Italy. Riv Ital di Paleontol e Stratigr 93:379–442

  10. Camidge K (2009) HMS Colossus, an experimental site stabilization. Conserv Manag Archaeol Sites 11:161–188. https://doi.org/10.1179/175355210X12670102063742

  11. Casoli E, Ricci S, Belluscio A et al (2015) Settlement and colonization of epi-endobenthic communities on calcareous substrata in an underwater archaeological site. Mar Ecol 36:1060–1074. https://doi.org/10.1111/maec.12201

  12. Clarke JM (1908) The beginnings of dependent life. N Y State Mus Bull 121:146–169

  13. Costa de Almeida JA (2007) Icnofósseis de macrobioerosão na Bacia da Paraíba (Cretáceo Superior Paleógeno), nordeste do Brasil

  14. Curci J (2006) The reburial of waterlogged archaeological wood in wet environments. Tech Briefs Hist Archaeol 1:21–25

  15. Davidde B (2004) Methods and strategies for the conservation and museum display in situ of underwater cultural heritage. Archaeol Maritima Mediterr 1:137–150

  16. Davidde B, Bartolini M, Poggi D, Ricci S (2010) Marine bioerosion of stone artefacts preserved in the Museo Archeologico dei Campi Flegrei in the Castle of Baia (Naples). Archaeol Maritima Mediterr 7:1000–1041

  17. Diez ME, Radashevsky VI, Orensanz JM, Cremonte F (2011) Spionid polychaetes (Annelida: Spionidae) boring into shells of molluscs of commercial interest in northern Patagonia, Argentina. Ital J Zool 78:497–504. https://doi.org/10.1080/11250003.2011.572565

  18. Dorsett DA (1961) The behaviour of Polydora ciliata (Johnst.). Tube-building and burrowing. J Mar Biol Assoc U K 41:577–590

  19. Evans JW (1969) Borers in the shell of the sea scallop, Placopecten magellnnicus. Am Zool 9:775–782

  20. Fischer R, Pernet B, Reitner J (2000) Organomineralization of cirratulid annelid tubes-fossil and recent examples. Facies 42:35–49. https://doi.org/10.1007/BF02562565

  21. Giangrande A (1988) Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis. J Exp Mar Biol Ecol 120:263–276

  22. Giangrande A, Gravina MF (2015) Brackish-water polychaetes, good descriptors of environmental changes in space and time. Transitional Waters Bull 9:42–55

  23. Giangrande A, Licciano M, Musco L (2005) Polychaetes as environmental indicators revisited. Mar Pollut Bull 50:1153–1162

  24. Giangrande A, Licciano M, Schirosi R et al (2014) Chemical and structural defensive external strategies in six sabellid worms (Annelida). Mar Ecol 35:36–45. https://doi.org/10.1111/maec.12053

  25. Gibson PH (1977) Reproduction in the cirratulid polychaetesDodecaceria concharum and D. pulchra. J Zool 182:89–102. https://doi.org/10.1111/j.1469-7998.1977.tb04143.x

  26. Gibson PH (2017) A search for trace fossils of the burrowing cirratulid polychaetes Dodecaceria fimbriata and D. concharum. Ichnos 24:83–90

  27. Gravina MF, Ardizzone GD, Belluscio A et al (1989) Polychaetes of an artificial reef in the central Mediterranean Sea. Estuar Coast Shelf Sci 28:161–172

  28. Gravina MF, Lezzi M, Bonifazi A, Giangrande A (2015) The genusNereis L., 1758 (Polychaeta, Nereididae): state of the art for identification of Mediterranean species. Atti della Soc Toscana di Sci Nat Mem Ser B 122:147–164

  29. Gregory DJ (1999) Re-burial of timbers in the marine environment. Marit Archaeol Newsl Rosk Den 12:25–29

  30. Gregory DJ, Manders M (2015) Best practices for locating, surveying, assessing, monitoring and preserving underwater archaeological sites. SASMAP Guideline Manual 2

  31. Gregory DJ, Ringgaard R, Dencker J (2008) From a grain of sand a mountain appears: sediment transport and entrapment to facilitate the in situ stabilisation of exposed wreck sites. Marit Archaeol Newsl Den 23:15–23

  32. Heumüller M (2012) Erosion and archaeological heritage protection in Lake Constance and Lake Zurich: the Interreg IV Project ‘Erosion und Denkmalschutz am Bodensee und Zürichsee’. Conserv Manag Archaeol Sites 14:48–59. https://doi.org/10.1179/1350503312Z.0000000005

  33. Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252. https://doi.org/10.1007/BF00298083

  34. Hutchings PA (2008) Role of polychaetes in bioerosion of coral substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 249–264

  35. Lewis DB (1968) Feeding and tube-building in the Fabriciinae (Annelida, Polychaeta). Proc Linn Soc Lond 179:37–49

  36. Manders M (2011) Guidelines for protection of submerged wooden cultural heritage, including cost–benefit analysis. WreckProtect Project, Amersfoort

  37. Martin EA (1933) Polymorphism and methods of asexual reproduction in the annelid, Dodecaceria, of Vineyard Sound. Biol Bull 65:99–105

  38. Martinell J, Domènech R (2009) Commensalism in the fossil record: eunicid polychaete bioerosion on Pliocene solitary corals. Acta Palaeontol Pol 54:143–154. https://doi.org/10.4202/app.2009.0115

  39. McDiarmid H, Day R, Wilson R (2004) The ecology of polychaetes that infest abalone shells in Victoria, Australia. J Shellfish Res 23:1179–1188

  40. Palma P, Parham B (2009) Swash Channel Wreck: project report for environmental scoping study for in situ stabilization of the site. Unpublished Report English Heritage Bournmouth University

  41. Passaro S, Barra M, Saggiomo R et al (2013) Multi-resolution morpho-bathymetric survey results at the Pozzuoli-Baia underwater archaeological site (Naples, Italy). J Archaeol Sci 40:1268–1278

  42. Pomey P (1998) Remarques sur la conservation in situ du bois de quelques épaves antiques de Méditerranée. In: Proceedings of the 7th ICOM-CC working group on wet organic archaeological materials conference, Grenoble, France, Actes de la 7ème conférence du groupe de travail Matériaux archéologiques organiques humides de l’ICOM-CC. Grenoble, pp 53–57

  43. Ricci S, Pietrini A, Bartolini M, Sacco Perasso C (2013) Role of the microboring marine organisms in the deterioration of archaeological submerged lapideous artifacts (Baia, Naples, Italy). Int Biodeterior Biodegrad 82:199–206

  44. Ricci S, Sacco Perasso C, Antonelli F, Davidde Petriaggi B (2015) Marine bivalves colonizing Roman artefacts recovered in the Gulf of Pozzuoli and in the Blue Grotto in Capri (Naples, Italy): boring and nestling species. Int Biodeterior Biodegrad 98:89–100. https://doi.org/10.1016/j.ibiod.2014.12.001

  45. Richards V (2011) In situ preservation—application of a process-based approach to the management of underwater cultural heritage. In: Proceedings of the Asia-Pacific regional conference on underwater cultural heritage (8–12 November 2011, Manila, Filipinas). Asian Academy for Heritage Management, Manila, pp 769–785

  46. Richards V, Godfrey I, Blanchette R et al (2009) In situ monitoring and stabilisation of the James Matthews shipwreck site. In: ICOM group on wet organic archaeological materials conference. Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, pp 113–159

  47. Sato-Okoshi W, Okoshi K (1997) Survey of the genera Polydora, Boccardiella and Boccardia (Polychaeta, Spionidae) in Barkley Sound (Vancouver Island, Canada), with special reference to boring activity. Bull Mar Sci 60:482–493

  48. Simonini R, Massamba N’Siala G, Grandi V, Prevedelli D (2009) Distribution of the genus Ophryotrocha (Polychaeta) in Italy: new reports and comments on the biogeography of Mediterranean species. Vie Milieu 59:79–88

  49. Stabili L, Schirosi R, Licciano M, Giangrande A (2009) The mucus ofSabella spallanzanii (Annelida, Polychaeta): its involvement in chemical defence and fertilization success. J Exp Mar Biol Ecol 374:144–149

  50. Stewart J, Murdock LD, Wadell P (1995) Reburial of the Red Bay wreck as a form of preservation and protection of the historic resource. In: Vandiver PB, Druzik JR, Madrid JLG et al (eds) Materials issues in art and archaeology IV. Materials Research Society, Pennsylvania, pp 791–805

  51. Steyne H (2009) Cegrass, sand and marine habitats: a sustainable future for the William Salthouse. In: Richards V, McKinnon J (eds) In situ conservation of cultural heritage: public, professionals and preservation. Past Foundation, Columbus, pp 40–49

  52. Voigt E (1965) Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontol Z 39:193–211. https://doi.org/10.1007/BF02990164

  53. Voigt E (1971) Fremdskulpturen an Steinkernen von Polychaeten-Bohrgängen aus der Maastrichter Tuffkreide. Paläontol Z 45:144–153. https://doi.org/10.1007/BF02989572

  54. Voigt E (1975) Tunnelbaue rezenter und fossiler phoronidea. Paläontol Z 49:135–167. https://doi.org/10.1007/BF02988072

  55. Wisshak M (2006) High-latitude bioerosion: the Kosterfjord experiment. Springer, Berlin, p 202

  56. Wisshak M, Tapanila L (eds) (2008) Current developments in bioerosion. Springer, Berlin, p 499

Download references

Acknowledgements

We are grateful to Dr. Barbara Davidde Petriaggi, ISCR Director of the Underwater Archaeological Operation Unit and of the Department of Archaeology (NIAS—Nucleo per gli Interventi di Archaeologia Subacquea), for supporting our research. We thank architect Filomena Lucci, Dr. Marco Ciabattoni (ISCR) and Mr. Gian Franco Priori (ISCR) for diving assistance and underwater photographic documentation. We would like to thank the reviewers and Max Wisshak, Guest Editor of Facies Special Issue Bioerosion: an interdisciplinary approach, for their precious comments and suggestions. We would also like to thank Miss Anna Rodgers for her careful review of the English form.

Author information

Correspondence to Federica Antonelli.

Additional information

This article is part of a Topical Collection in Facies on Bioerosion: An interdisciplinary approach, guest edited by Ricci, Uchman, and Wisshak.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gravina, M.F., Antonelli, F., Sacco Perasso, C. et al. The role of polychaetes in bioerosion of submerged mosaic floors in the Underwater Archaeological Park of Baiae (Naples, Italy). Facies 65, 19 (2019). https://doi.org/10.1007/s10347-019-0563-6

Download citation

Keywords

  • Underwater Cultural Heritage
  • Caulostrepsis
  • Maeandropolydora
  • Dodecaceria
  • Polydora
  • Pseudopolydora