Advertisement

Facies

, 65:24 | Cite as

Bioerosion ichnotaxa: review and annotated list

  • Max WisshakEmail author
  • Dirk Knaust
  • Markus Bertling
Original Article
  • 107 Downloads
Part of the following topical collections:
  1. Bioerosion: An interdisciplinary approach

Abstract

A remarkable diversity of bioerosion trace fossils is reflected by the plethora of ichnotaxa that has been proposed for these structures during the past two centuries. Bioerosion traces include microborings, macroborings, grazing traces, attachment etchings, and predation traces. They occur in calcareous, siliceous, osteic, and xylic substrates, and are known or interpreted to be produced by tracemakers as diverse as bacteria, fungi, algae, invertebrates, and vertebrates. This review presents the status quo of an inventory of all bioerosion ichnotaxa currently recognized as valid, comprising 123 ichnogenera and 339 ichnospecies, including 45 combinationes novae, the majority of which on account of fossil sponge bioerosion traces formerly grouped within the sponge biotaxon Cliona. In addition, the spelling of several ichnotaxa has to be corrected, leading to eight nomina corrigenda, and three cases of primary or secondary homonymy require establishing nomina nova, i.e., the new ichnogenus name Irhopalia replacing Rhopalia Radtke, 1991, as well as the new ichnospecies names Entobia morrisi replacing E. glomerata (Morris, 1851) and Entobia tuberculata replacing E. mammillata Bromley and D’Alessandro, 1984, respectively. Ichnotaxa of dubious or invalid nomenclatural status currently include an additional 76 ichnogenera and 157 ichnospecies. The invalid ichnogenus Ipites is herein reinstated as new ichnogenus. Considering that only four valid (and one invalid) ichnofamilies had previously been established for bioerosion ichnotaxa, we here introduce a suite of 14 additional ichnofamilies: Gastrochaenolitidae, Talpinidae, Entobiaidae, Planobulidae, Ichnoreticulinidae, Saccomorphidae, Centrichnidae, Renichnidae, Podichnidae, Gnathichnidae, Circolitidae, Oichnidae, Belichnidae, and Machichnidae. During the past five decades, the number of valid bioerosion ichnotaxa has more than quadrupled, reflecting a boost in bioerosion research, but also indicating the need for ichnotaxonomic consolidation in concert with a revision of key ichnogenera. In this context, the aim of this overview is to call for feedback from the research community in order to foster completeness of this list and to provide ichnotaxonomic stability. Furthermore, we want to raise awareness of the existence of the listed ichnotaxa, many of which obviously have remained unconsidered or forgotten for a long time.

Keywords

Trace fossil Bioerosion Ichnotaxonomy Ichnofamily Ichnogenus Ichnospecies 

Notes

Acknowledgements

We gratefully acknowledge all colleagues from the bioerosion research community who brought overlooked ichnotaxa to our attention and discussed the validity of reputed ichnotaxa with us. These are Jorge Genise (Buenos Aires, Argentina), Kantimati Kulkarni (Agharkar, India), Eduardo Mayoral (Huelva, Spain), Matthew Riley (Cambridge, UK), Andrew Rindsberg (Livingston, USA), Ana Santos (Huelva, Spain), Ursula Toom (Tallinn, Estonia), Alfred Uchman (Krakow, Poland), Mark Wilson (Wooster, USA), and Li-Jun Zhang (Henan, China). We are particularly indebted to Christine Schönberg (Perth, Australia), who, during her ongoing revision of the bioeroding sponge genus Cliona, brought many actual bioerosion ichnospecies to light and to our notice. We thank Sebastian Teichert (Erlangen, Germany) for his valuable advice regarding the validity of Latin, latinized, or Greek spelling of various ichnotaxa and their combinations. Andrew Rindsberg (Livingston, USA) and Radek Mikuláš (Prague, Czech Republic) provided valuable reviews of this manuscript. Last but not least, we are indebted to our dear friend and mentor Richard G. Bromley (1939-2018) for his immense contribution to bioerosion research and ichnotaxonomy.

References

  1. Alekseev A, Endelman L (1989) Association of ectoparasitic prosobranch gastropods with Upper Cretaceous echinoid Galerites. [Assotsiatsija ektoparaziticheskikh perednezhabernikh gastropod c pozdnemelovimi morskimi ezhami Galerites]. In: Kaljo DL (ed) Fossil and recent echinoderm researches. Akademia Nauk Estonoskoi SSR, Tallinn, pp 166–174Google Scholar
  2. Andrew C, Howe P, Paul CR, Donovan SK (2010) Fatally bitten ammonites from the lower Lias Group (Lower Jurassic) of Lyme Regis, Dorset. Proc Yorkshire Geol Soc 58:81–94CrossRefGoogle Scholar
  3. Annandale N (1920) Observations on “Physia prinsepii,” Sowerby and on a clionid sponge that burrowed in its shell. Rec Geol Surv India 51:50–64Google Scholar
  4. Arendt YA (2012) Traces of Augoichnus dituberculatus gen. et sp. nov. on Hypermorphocrinus magnospinosus from the Lower Permian of Cisuralia. Paleontol J 46:886–893CrossRefGoogle Scholar
  5. Badve RM, Ghare MA (1984) Holocene trace fossils from beach rock of Velas coast, Raigad district, Maharashtra. Biovigyanam 10:165–172Google Scholar
  6. Bałuk W, Radwański A (1991) A new occurrence of fossil acrothoracican cirripedes: Trypetesa polonica sp. n. in hermitted gastropod shells from the Korytnica Basin (Middle Miocene: Holy Cross Mountains, Central Poland), and its bearing on behavioral evolution of the genus Trypetesa. Acta Geol Polonica 41:1–36Google Scholar
  7. Bassett MG, Popov LE, Holmer LE (2004) The oldest-known metazoan parasite? J Paleontol 78:1214–1216CrossRefGoogle Scholar
  8. Bassler RS (1952) Taxonomic notes on genera of fossil and recent Bryozoa. J Wash Acad Sci 42:381–385Google Scholar
  9. Bengtson S, Conway Morris S, Cooper BJ, Jell PA, Runnegar BN (1990) Early Cambrian fossils from South Australia. Mem Ass Aust Palaeontols 9:1–264Google Scholar
  10. Bertling M (1992) Arachnostega n. ichnog. – burrowing traces in internal moulds of boring bivalves (Late Jurassic, northern Germany). Pal Z 66:177–185CrossRefGoogle Scholar
  11. Bertling M (1995) Ropalonaria arachne (Fischer, 1866) eine Bryozoen–Bohrspur aus dem norddeutschen Malm. Münstersche Forsch Geol Pal 77:357–362Google Scholar
  12. Bertling M (2007) What´s in a name? Nomenclature, systematics, ichnotaxonomy. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 81–91CrossRefGoogle Scholar
  13. Bertling M, Rindsberg AK, Schlirf M, Nielsen JK, Mikuláš R, Genise J, Nielsen KSS, Uchman A, Bromley RG (2004) Comments on the draft proposal to emend the Code with respect to trace fossils (2). Bull Zool Nomencl 61:37–39Google Scholar
  14. Bertling M, Braddy SJ, Bromley RG, Demathieu GR, Genise JF, Mikuláš R, Nielsen JK, Nielsen KSS, Rindsberg AK, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286CrossRefGoogle Scholar
  15. Beuck L, López Correa M, Freiwald A (2008a) Biogeographical distribution of Hyrrokkin (Rosalinidae, Foraminifera) and its host-specific morphological and textural trace variability. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, Heidelberg, pp 329–360CrossRefGoogle Scholar
  16. Beuck L, Wisshak M, Munnecke A, Freiwald A (2008b) A giant boring in a Silurian stromatoporoid analysed by computer tomography. Acta Palaeontol Polonica 53:149–160CrossRefGoogle Scholar
  17. Biernat G (1961) Diorygma atrypophilia n. gen., n. sp.—a parasitic organism of Atrypa zonata Schnur. Acta Palaeontol Polonica 6:17–28Google Scholar
  18. Blissett DJ, Pickerill RK (2007) Systematic ichnology of microborings from the Cenozoic White Limestone Group, Jamaica, West Indies. Scripta Geol 134:77–108Google Scholar
  19. Boekschoten GJ (1970) On bryozoan borings from the Danian at Fakse, Denmark. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J, Spec Issue 3. Seel House Press, Liverpool, pp 43–48Google Scholar
  20. Bohatý J, Ausich WI, Nardin E, Nyhuis C, Schröder S (2012) Coral-crinoid biocoenosis and resulting trace fossils from the Middle Devonian of the Eifel Synclines (Rhenish Massif, Germany). J Paleontol 86:282–301CrossRefGoogle Scholar
  21. Borkar VD, Kulkarni KG (1987) Cylindricavus perplexus ichnogen. et ichnosp. nov. from the Gulbarga District, Karnataka State. Biovigyanam 13:98–103Google Scholar
  22. Botquelen A, Mayoral E (2005) Early Devonian bioerosion in the Rade de Brest, Armorican Massif, France. Palaeontology 48:1057–1064CrossRefGoogle Scholar
  23. Branson CC (1937) Stratigraphy and fauna of the Sacajawea Formation, Mississippian, of Wyoming. J Paleontol 11:650–660Google Scholar
  24. Breton G (1992) Les Goniasteridae (Asteroidea, Echinodermata) Jurassiques et crétacés de France. Taphonomie, systématique, biostratigraphie, paléobiogéographie, évolution. Bulletin Trimesteriel de la Société Géologique de la Normandie, h.s. Supplement 78:1–590Google Scholar
  25. Breton G (2011) Le Gault du Perthois: terriers, phosphates et petites crottes. Bull Ass Géol Auboise 31:1–66Google Scholar
  26. Breton G (2015a) Unellichnus calciforans igen. nov., isp. nov., boring in a Maastrichtian lithified seafloor from the Cotentin (France). Annales de Paléontologie 101:143–151CrossRefGoogle Scholar
  27. Breton G (2015b) Le type de l’ichnotaxon Podichnus donovani Breton, 2011 est un bryozoaire cyclostome. Bull Ass Geol Auboise 35:7–8Google Scholar
  28. Breton G (2017) Les sclérobiontes des huîtres du Cénomanien supérieur du Mans (Sarthe, France). Ann Paleontol 103:173–183CrossRefGoogle Scholar
  29. Breton G, Néraudeau D, Cuenca-Boulat C (1992) Gnathichnus stellarum ichnosp. nov., trace de broutage d’un echinide du Campanien des Charentes (France). Rev Paleobiol 11:219–229Google Scholar
  30. Breton G, Wisshak M, Néraudeau D, Morel N (2017) Parasitic gastropod bioerosion trace fossil on Cenomanian oysters from Le Mans, France and its ichnologic and taphonomic context. Acta Palaeontol Polonica 62:45–57CrossRefGoogle Scholar
  31. Brett CE (1985) Tremichnus: a new ichnogenus of circular-parabolic pits in fossil echinoderms. J Paleontol 59:625–635Google Scholar
  32. Bromley RG (1970a) Borings as trace fossils and Entobia cretacea Portlock, as an example. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J, Spec Issue 3. Seel House Press, Liverpool, pp 49–90Google Scholar
  33. Bromley RG (1970b) Predation and symbiosis in some Upper Cretaceous clionid sponges. Bull Geol Soc Denmark 19:398–405Google Scholar
  34. Bromley RG (1972) On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläontol Z 46:93–98CrossRefGoogle Scholar
  35. Bromley RG (1975) Comparative analysis of fossil and recent echinoid bioerosion. Palaeontology 18:725–739Google Scholar
  36. Bromley RG (1981) Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geol Hispanica 16:55–64Google Scholar
  37. Bromley RG (1993) Predation habits of octopus past and present and a new ichnospecies, Oichnus ovalis. Bull Geol Soc Den 40:167–173Google Scholar
  38. Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The palaeobiology of trace fossils. Wiley, London, pp 134–154Google Scholar
  39. Bromley RG (1996) Trace fossils: biology, taphonomy and application, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  40. Bromley RG (2004) A stratigraphy of marine bioerosion. Geol Soc Lond Spec Publ 228:455–479CrossRefGoogle Scholar
  41. Bromley RG, Asgaard U (1993) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2:93–116CrossRefGoogle Scholar
  42. Bromley RG, D’Alessandro A (1983) Bioerosion in the Pleistocene of southern Italy: ichnogenera Caulostrepsis and Maeandropolydora. Riv Italiana Paleontol Stratigr 89:283–309Google Scholar
  43. Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Riv Italiana Paleontol Stratigr 90:227–296Google Scholar
  44. Bromley RG, D’Alessandro A (1987) Bioerosion of the Plio-Pleistocene transgression of southern Italy. Riv Italiana Paleontol Stratigr 93:379–442Google Scholar
  45. Bromley RG, D’Alessandro A (1989) Ichnological study of shallow-marine endolithic sponges from the Italian coast. Riv Italiana Paleontol Stratigr 95:279–314Google Scholar
  46. Bromley RG, Martinell J (1991) Centrichnus, new ichnogenus for centrically patterned attachment scars on skeletal substrates. Bull Geol Soc Denmark 38:243–252Google Scholar
  47. Bromley RG, Surlyk F (1973) Borings produced by brachiopod pedicles, fossil and recent. Lethaia 6:349–365CrossRefGoogle Scholar
  48. Bromley RG, Wisshak M, Glaub I, Botquelen A (2007) Ichnotaxonomic review of dendriniform borings attributed to foraminiferans: Semidendrina igen. nov. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 518–530CrossRefGoogle Scholar
  49. Bromley RG, Uchman A, Kolodziej B, Kedzierski M (2009) Large chambered sponge borings on a Late Cretaceous abrasion platform at Cracow, Poland. Cretac Res 30:149–160CrossRefGoogle Scholar
  50. Bronn HG (1837) Lethaea Geognostica, Abbildungen und Beschreibungen der für die Gebirgs-Formationen bezeichnendsten Versteinerungen, Erster Band. Schweizerbart, StuttgartGoogle Scholar
  51. Bronn HG (1848) Index Palaeontologicus, 1. Abtheilung, 1. Hälfte. Schweizerbart, StuttgartGoogle Scholar
  52. Buatois LA, Wisshak M, Wilson MA, Mángano MG (2017) Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth Sci Rev 164:102–181CrossRefGoogle Scholar
  53. Buchholz H (1986) Die Höhle eines Spechtvogels aus dem Eozän von Arizona, USA (Aves, Piciformes). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, N F 28:5–25Google Scholar
  54. Bundschuh M, Balog SJ (2000) Fasciculus rogus nov. isp., an endolithic trace fossil. Ichnos 7:149–152CrossRefGoogle Scholar
  55. Bystrov AP (1956) On the damage caused by fungi in the skeletal elements of fossil animals. Vestnik Leningradskogo Universiteta, Seria Geologii i Geografii 18:30–46 [in Russian]Google Scholar
  56. Bystrow AP (1959) The microstructure of skeleton elements in some vertebrates from lower Devonian deposits of the USSR. Acta Zool 40:59–83CrossRefGoogle Scholar
  57. Cadée GC, de Wolf P (2013) Belichnus traces produced on shells of the bivalve Lutraria lutraria by gulls. Ichnos 20:15–18CrossRefGoogle Scholar
  58. Calvin S (1888) On a new genus and new species of tubicolar Annelida. Am Geol 1:24–28Google Scholar
  59. Cameron B (1969a) New name for Palaeosabella prisca (McCoy), a Devonian worm-boring, and its preserved probable borer. J Paleontol 43:189–192Google Scholar
  60. Cameron B (1969b) Paleozoic shell-boring annelids and their trace fossils. Am Zool 9:689–703CrossRefGoogle Scholar
  61. Campbell SE, Kazmierczak J, Golubić S (1979) Palaeoconchocelis starmachii n. gen., n. sp., a Silurian endolithic rhodophyte (Bangiaceae). Acta Palaeontol Polonica 24:405–408Google Scholar
  62. Casadío S, Marenssi S, Santillana S (2001) Endolithic bioerosion traces attributed to boring bryozoans in the Eocene of Antarctica. Ameghiniana 38:321–329Google Scholar
  63. Casey R (1961) The stratigraphical paleontology of the Lower Greensand. Palaeontology 3:487–621Google Scholar
  64. Chapman F (1907) New or little known Victorian fossils in the National Museum. Part IX - Some Tertiary species. Proc R Soc Vic 20:208–221Google Scholar
  65. Chatterton BDE (1975) A commensal relationship between a small filter feeding organism and Australian Devonian spiriferid brachiopods. Paleobiology 1:371–378CrossRefGoogle Scholar
  66. Chiplonkar G, Ghare M (1976) Paleolithophaga, a new ichnogenus from south Indian Cretaceous rocks of Trichinopoly district. Biovigyanam 2:161–164Google Scholar
  67. Chiplonkar G, Ghare M (1977) Serpulid and barnacle borings on South Indian Cretaceous fossils from Trichinopoly District, Tamil Nadu. Biovigyanam 3:193–204Google Scholar
  68. Chow MM (1957) A new Cliona-like boring sponge from the Devonian of Hunan [in Chinese]. Acta Palaeontol Sinica 5:63–68Google Scholar
  69. Chumakov NM, Dronov AV, Mikuláš R (2013) New ichnospecies of scratching traces from phosphatic nodules (Cenomanian, England). Stratigr Geol Correl 21:291–299CrossRefGoogle Scholar
  70. Clarke JM (1908) The beginnings of dependent life. N Y State Mus Bull 121:146–169Google Scholar
  71. Clarke JM (1921) Organic dependence and disease, their origin and significance. N Y State Mus Bull 221–222:1–113Google Scholar
  72. Cleevely RJ (1983) World palaeontological collections. Mansell Publishing, LondonGoogle Scholar
  73. Codez J, de Saint-Seine R (1958) Révision des Cirripèdes acrothoraciques fossiles. Bull Soc Géol France (série 6) 7:699–719Google Scholar
  74. Cole AR, Palmer TJ (1999) Middle Jurassic worm borings, and a new giant ichnospecies of Trypanites from the Bajocian/Dinantian unconformity, southern England. Proc Geol Ass 110:203–209CrossRefGoogle Scholar
  75. Collinson ME, Hooker JJ (2000) Gnaw marks on Eocene seeds: evidence for early rodent behaviour. Palaeogeogr Palaeoclimatol Palaeoecol 157:127–149CrossRefGoogle Scholar
  76. Condra GE, Elias MK (1944) Carboniferous and Permian ctenostomatous bryozoa. Bull Geol Soc Am 55:517–568CrossRefGoogle Scholar
  77. Cruickshank A (1986) Archosaur predation on an east African Middle Triassic dicynodont. Palaeontology 29:415–422Google Scholar
  78. d’Archiac A, Fischer P, de Verneuil E (1866) Asie Mineure. Description physique de cette contrée—Paléontologie. Librairie Théodore Morgand, ParisGoogle Scholar
  79. d’Orbigny A (1847) Voyage dans l’Amérique Méridionale. 5 [Zoophytes]:7–28Google Scholar
  80. d’Orbigny A (1850) Prodrome de Paléontologie stratigraphique universelle des animaux mollusques et rayonnés, vol 2. V. Masson, ParisGoogle Scholar
  81. de Araújo-Júnior HI, de Souza Barbosa FH, da Silva LHM (2017) Overlapping paleoichnology, paleoecology and taphonomy: analysis of tooth traces in a Late Pleistocene–early Holocene megafaunal assemblage of Brazil and description of a new ichnotaxon in hard substrate. Palaeogeogr Palaeoclimatol Palaeoecol 468:122–128CrossRefGoogle Scholar
  82. de Laubenfels MW (1955) Porifera. In: Moore RC (ed) Treatise on invertebrate paleontology, Part E—Porifera. University of Kansas Press, Lawrence, pp E21–E112Google Scholar
  83. de Saint-Seine R (1951) Un Cirripèdes acrothoraciques du Crétacé: Rogerella lecointrei nov. gen., nov. sp. Comptes Rendus de l’Académie des Sciences 233:1051–1054Google Scholar
  84. de Saint-Seine R (1954) Existence de Cirripèdes acrothoraciques dès de Lias: Zapfella pattei nov. gen., nov. sp. Bull Soc Géol France 6(série 4):447–451Google Scholar
  85. de Saint-Seine R (1955) Les Cirripèdes acrothoraciques échinicoles. Bull Soc Géol France 6(série 5):299–303Google Scholar
  86. de Serres M (1840) Description de quelques mollusques fossiles nouveaux des terrains infra-liassiques et de la craie compacte inferieure du Midi de la France. Ann Sci Nat (Zoologie) 14:5–25Google Scholar
  87. Dogiel V (1908) Entobius loimiae n. g. n. sp., eine endoparasitische Copepode. Zool Anz 33:561–567Google Scholar
  88. Dong Y, Ji Q, Wang S (1984) The discovery of microscopic trace fossils in the Sinian Doushantuo Formation in southwestern China [in Chinese]. Scientia Geol Sinica 1984:346–347Google Scholar
  89. Donovan SK (2002) A new ichnospecies of Gastrochaenolites Leymerie from the Pleistocene Port Morant Formation of southeast Jamaica and the taphonomy of calcareous linings in clavate borings. Ichnos 9:61–66CrossRefGoogle Scholar
  90. Donovan SK (2018) A new ichnogenus for Teredolites longissimus Kelly and Bromley. Swiss J Palaeontol 137:95–98CrossRefGoogle Scholar
  91. Donovan SK, Jagt JWM (2002) Oichnus Bromley borings in the irregular echinoid Hemipneustes Agassiz from the type Maastrichtian (Upper Cretaceous, The Netherlands and Belgium). Ichnos 9:67–74CrossRefGoogle Scholar
  92. Donovan SK, Jagt JWM (2005) Flosculichnus tectus, an etched attachment scar from the Upper Cretaceous (Maastrichtian) of The Netherlands. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 75:207–210Google Scholar
  93. Duchassaing P (1850) Animaux radiaires des Antilles. Plon Frères, ParisGoogle Scholar
  94. Duchassaing de Fonbressin P, Michelotti GJ (1864) Spongiaires de la Mer Caraibe. De Erver Loosjes, HaarlemGoogle Scholar
  95. Duncan PM (1876) On some unicellular algae parasitic within Silurian and Tertiary corals, with a notice of their presence in Calceola sandalina and other fossils. Q J Geol Soc 32:205–211CrossRefGoogle Scholar
  96. Edinger EN, Risk MJ (1994) Oligocene-Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients. Palaios 9:576–598CrossRefGoogle Scholar
  97. Ekdale AA, Bromley RG (2001) Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia 34:1–12CrossRefGoogle Scholar
  98. Ekdale AA, Brown FH, Feibel CS (1989) Nonmarine macroborings in early Pleistocene algal biolithites (stromatolites) of the Turkana Basin, northern Kenya. Palaios 4:389–396CrossRefGoogle Scholar
  99. Elias M (1957) Late Mississippian fauna from the Redoak Hollow formation of southern Oklahoma, part 1. J Paleontol 31:370–427Google Scholar
  100. Elias M (1958) Late Mississippian fauna from the Redoak Hollow formation of southern Oklahoma, part 4. J Paleontol 32:1–57Google Scholar
  101. Elias RJ (1980) Borings in solitary rugose corals of the Selkirk Member, Red River formation (late Middle or Upper Ordovician), southern Manitoba. Can J Earth Sci 17:272–277CrossRefGoogle Scholar
  102. Elliott GF (1962) More microproblematica from the Middle East. Micropaleontology 8:29–44CrossRefGoogle Scholar
  103. Erickson JM, Bouchard TD (2003) Description and interpretation of Sanctum laurentiensis, new ichnogenus and ichnospecies, a domichnium mined into Late Ordovician (Cincinnatian) ramose bryozoan colonies. J Paleontol 77:1002–1010CrossRefGoogle Scholar
  104. Étallon A (1859) Sur la classification des Spongiaires du Haut-Jura et leur distribution dans les étages. Actes de la Société Jurassienne d’Émulation 9:129–160Google Scholar
  105. Étallon A (1864) Etudes paleontologiques sur le Jura graylois, terrains jurassiques moyen et supérieur. Mémoires de la Societé d’Émulation du Département de Doubs, 3. Série 8:221–506Google Scholar
  106. Etheridge R (1891) On the occurrence of microscopic fungi, allied to the genus Palæachlya, Duncan, in the Permo-Carboniferous rocks of N. S. Wales and Queensland. Rec Geol Surv N S W 2:95–99Google Scholar
  107. Etheridge R (1899) On two additional perforating bodies, believed to be thallophytic cryptograms, from the Lower Palaeocoic rocks of N. S. Wales. Rec Aust Mus 3:121–127CrossRefGoogle Scholar
  108. Etheridge R (1904) An endophyte (Stichus mermisoides) occurring in the test of a Cretaceous bivalve. Rec Aust Mus 5:255–257CrossRefGoogle Scholar
  109. Fenton CL, Fenton MA (1932) Boring sponges in the Devonian of Iowa. Am Midl Nat 13:42–54CrossRefGoogle Scholar
  110. Fischer MP (1866) Étude sur les Bryozoaires perforants de la famille des Térébriporides. Nouvelles Archives du Museum d’Histoire Naturelle de Paris 2:293–313Google Scholar
  111. Fischer MP (1868) Recherches sur les Eponges perforantes fossiles. Nouvelles Archives du Museum d’Histoire Naturelle de Paris 4:16–170Google Scholar
  112. Fischer MP (1875) D´un type de sarcodaires. J de Zoologie 4:530–533Google Scholar
  113. Fraas O (1867) Aus dem Orient. Geologische Beobachtungen am Nil, auf der Sinai-Halbinsel und in Syrien. Ebner & Seubert, StuttgartGoogle Scholar
  114. Fraas O (1869) Begleitworte zur geognostischen Specialkarte von Württemberg - Atlasblatt Giengen mit den Umgebungen von Dischingen, Nattheim und Niederstotzingen. Königlich statistisch-topographisches Büro, StuttgartGoogle Scholar
  115. Francischini H, Paes Neto VD, Martinelli AG, Pereira VP, Marinho TS, Teixeira VPA, Ferraz MLF, Soares MB, Schultz CL (2016) Invertebrate traces in pseudo-coprolites from the Upper Cretaceous Marilia formation (Bauru Group), Minas Gerais State, Brazil. Cretac Res 57:29–39CrossRefGoogle Scholar
  116. Frest TJ, Strimple HL, Paul CRC (2011) The North American Holocystites fauna (Echinodermata, Blastozoa: Diploporita): paleobiology and systematics. Bull Am Paleontol 380:1–133Google Scholar
  117. Frič A (1883) Studien im Gebiete der böhmischen Kreideformation. III. Die Iser-Schichten. Archiv für die naturwissenschaftlichen Landesdurchforschung von Böhmen 5:1–140Google Scholar
  118. Fritsch A (1908) Problematica Silurica. Gerhard, PragGoogle Scholar
  119. Furlong CM, McRoberts CA (2014) Commensal borings from the Middle Devonian of central New York, ecologic and taxonomic review of Clionoides, Clionolithes, and Canaliparva n. ichnogen. J Paleontol 88:130–144CrossRefGoogle Scholar
  120. Fürsich FT, Palmer TJ, Goodyear KL (1994) Growth and disintegration of bivalve-dominated patch reefs in the Upper Jurassic of southern England. Palaeontology 37:131–171Google Scholar
  121. Genise JF (1995) Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina. Ichnos 3:287–299CrossRefGoogle Scholar
  122. Genise JF (2017) Ichnoentomology—insect traces in soils and Paleosols. Topics in Geobiology 37. Springer, Heidelberg BerlinGoogle Scholar
  123. Genise JF, Hazeldine PL (1995) A new insect trace fossil in Jurassic wood from Patagonia, Argentina. Ichnos 4:1–5CrossRefGoogle Scholar
  124. Genise JF, Garrouste R, Nel P, Grandcolas P, Maurizot P, Cluzel D, Cornette R, Fabre A-C, Nel A (2012) Asthenopodichnium in fossil wood: different trace makers as indicators of different terrestrial palaeoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 365:184–191CrossRefGoogle Scholar
  125. Ghare MA (1982) Borings on belemnoid rostra from Utatur Group of Upper Cretaceous rocks of Trichinopoly district, Tamil Nadu. Geol Soc India 23:129–135Google Scholar
  126. Ghare MA (1985) Clionid sponge borings from South Indian Cretaceous rocks, Tiruchirapally District, Tamil Nadu. Biovigyanam 112:177–182Google Scholar
  127. Glaub I (1994) Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Courier Forschungsinstitut Senckenberg 174:1–324Google Scholar
  128. Głazek J, Marcinowski R, Wierzbowski A (1971) Lower Cenomanian trace fossils and transgressive deposits in the Cracow Upland. Acta Geol Polonica 21:433–448Google Scholar
  129. Golubić S, Radtke G (2008) The trace Rhopalia clavigera isp. n. reflects the development of its maker Eugomontia sacculata Kornmann, 1960. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, Heidelberg, pp 95–108CrossRefGoogle Scholar
  130. Golubić S, Brent G, Le Campion T (1970) Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting-embedding technique. Lethaia 3:203–209CrossRefGoogle Scholar
  131. Golubić S, Radtke G, Campbell SE, Lee S-J, Vogel K, Wisshak M (2014) The complex fungal microboring trace Saccomorpha stereodiktyon isp. nov. reveals the growth strategy of its maker. Ichnos 21:100–110CrossRefGoogle Scholar
  132. Goujet D, Locquin MV (1979) Découverte de spores fongiques dans les écailles de Poissons et d’Agnathes Paléozoïques: Mycobystrovia lepidophaga gen. et sp. nov. In: Proceedings of the 104e Congrès national des Sociétés savantes, Bordeaux, pp 87–99Google Scholar
  133. Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The Geologic Time Scale. Elsevier, AmsterdamGoogle Scholar
  134. Grant RE (1826) Notice of a new zoophyte (Cliona celata, Gr.) from the Firth of Forth. Edinburgh New Philosoph J 1:78–81Google Scholar
  135. Green JW, Knoll AH, Swett K (1988) Microfossils from Oolites and Pisolites of the Upper Proterozoic Eleonore Bay Group, Central East Greenland. J Paleontol 62:835–852CrossRefGoogle Scholar
  136. Gripp K (1967) Polydora biforans n. sp., ein in Belemniten-Rostren bohrender Wurm der Kreidezeit. Meyniana 17:9–10Google Scholar
  137. Gruber A (1933) Bohrorganismen im oberen Muschelkalk. Geol Rundsch, Leipzig Festschrift 23a:263–266Google Scholar
  138. Guo S (1991) A Miocene trace fossil of insect from Shanwang Formation in Linqu, Shandong. Acta Palaeontol Sinica 30:739–742Google Scholar
  139. Haga T, Kurihara Y, Kase T (2010) Reinterpretation of the Miocene sea-snake egg Moniopterus japonicus as a boring of rock-boring bivalve Lithophaga (Mytilidae: Mollusca). J Paleontol 84:848–857CrossRefGoogle Scholar
  140. Hancock A (1849) On the excavating powers of certain sponges belonging to the genus Cliona; with descriptions of several new species, and an allied generic form. Ann Mag Nat Hist (2nd series) 3:321–348Google Scholar
  141. Häntzschel W (1962) Trace fossils and problematica. In: Moore RC (ed) Treatise on Invertebrate Paleontology, Part W—Miscellanea. University of Kansas Press, Lawrence, pp W177–W245Google Scholar
  142. Häntzschel W (1975) Trace fossils and problematica. In: Moore RC (ed) Treatise on invertebrate paleontology, Part W—Supplement I, trace fossils. University of Kansas Press, Lawrence, pp W1–W269Google Scholar
  143. Hary A (1975) Inventaire des traces d’activité animale dans les sediments Mésozoiques du territoire Luxembourgeois. Publications du Service Géologique du Luxembourg 23:91–175Google Scholar
  144. Hatai K, Masuda K, Noda H (1974) Marine fossils from the Moniwa Formation along the Natori River, Sendai, northeast Honshu, Japan, part 2. Problematica from the Moniwa Formation. Trans Proc Palaeontol Soc Jpn New Ser 95:364–371Google Scholar
  145. Hillmer G, Schulz M (1973) Ableitung der Biologie und Ökologie eines Polychaeten der Oberkreide durch Analyse des Bohrganges Ramosulcichnus biforans (Gripp) nov. ichnogen. Mitt Geol-Paläontol Inst Univ Hamburg 42:5–24Google Scholar
  146. Ho J-S (1984) New family of poecilostomatoid copepods (Spiophanicolidae) parasitic on polychaetes from southern California, with a phylogenetic analysis of nereicoliform families. J Crustacean Biol 4:134–146CrossRefGoogle Scholar
  147. Hofmann K (1996) Die mikro-endolithischen Spurenfossilien der borealen Oberkreide Nordwest-Europas und ihre Faziesbeziehungen. Geol Jb, A 136:1–151Google Scholar
  148. Höpner S, Bertling M (2017) Holes in bones: ichnotaxonomy of bone borings. Ichnos 24:259–282CrossRefGoogle Scholar
  149. Hunt AP, Lucas SG, Klein K (2018) Late Triassic nonmarine vertebrate and invertebrate trace fossils and the pattern of the Phanerozoic record of vertebrate trace fossils. In: Tanner LA (ed) The Late Triassic World. Topics in Geobiology 46. Springer, Berlin, Heidelberg, pp 447–544Google Scholar
  150. Hyde JE (1953) Mississippian formations of central and southern Ohio. Ohio Geol Surv, Bull 51:214–221Google Scholar
  151. ICZN [International Commission for Zoological Nomenclature] (1999) International Code of Zoological Nomenclature, adopted by the International Union of Biological Sciences, 4th edn. International Trust for Zoological Nomenclature, LondonGoogle Scholar
  152. Ishikawa M, Kase T (2007) Spionid bore hole Polydorichnus subapicalis new ichnogenus and ichnospecies: a new behavioral trace in gastropod shells. J Paleontol 81:1466–1475CrossRefGoogle Scholar
  153. Jacobsen AR, Bromley RG (2009) New ichnotaxa based on tooth impressions on dinosaur and whale bones. Geol Q 53:373–382Google Scholar
  154. Jagt JWM, Neumann C, Donovan SK (2009) Petroxestes altera, a new bioerosional trace fossil from the upper Maastrichtian (Cretaceous) of northeast Belgium. Bulletin de l’Institut royal des Sciences naturelles de Belgique Sciences de la Terre 79:137–145Google Scholar
  155. Jarzembowski EA (1990) A boring beetle from the Wealden of the Weald. In: Boucot A (ed) Evolutionary paleobiology of behaviour and coevolution. Elsevier, Amsterdam, pp 373–376Google Scholar
  156. Karl H-V, Nyhuis CJ (2012) Ctenochelys stenopurus (Hay, 1905) (Testudines: Toxochelyidae) and Clidastes sp. (Squamata: Mosasauridae) from the upper Cretaceous of NW-Germany. Studia Palaeocheloniologica 4 (Studia Geologica Salamanticensia, volumen especial 9):129–142Google Scholar
  157. Karl H-V, Gröning E, Brauckmann C (2012) Revision of Tropidemys seebachi Portis, 1878 (Testudines: Eucryptodira) from the Kimmeridgian (Late Jurassic) of Hanover (Northwestern Germany). Studia Palaeocheloniologica 4 (Studia Geologica Salamanticensia, volumen especial 9):11–24Google Scholar
  158. Karpiński JJ (1962) Cast of the brood galleries of fossil beetle of the Scolytidae family from Oligocene/Miocene Sandstone at Osieczów (Lower Silesia). Pr Inst Geol 30:237–239Google Scholar
  159. Kelly SR, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807Google Scholar
  160. Kennedy W (1970) Trace fossils in the Chalk environment. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J, Spec Issue 3. Seel House Press, Liverpool, pp 263–282Google Scholar
  161. Kern JP, Grimmer JC, Lister KH (1974) A new fossil spionid tube, Pliocene and Pleistocene of California and Baja California. J Paleontol 48:978–982Google Scholar
  162. Kleemann K (2009) Gastrochaenolites hospitium isp. nov., trace fossil by a coral-associated boring bivalve from the Eocene and Miocene of Austria. Geol Carpath 60:339–342CrossRefGoogle Scholar
  163. Klompmaker AA, Artal P, van Bakel BWM, Fraaije RHB, Jagt JWM (2014) Parasites in the fossil record: a Cretaceous fauna with isopod-infested decapod crustaceans, infestation patterns through time, and a new ichnotaxon. PLoS ONE 9:e92551CrossRefGoogle Scholar
  164. Klompmaker AA, Portell RW, van der Meij ET (2016) Trace Fossil evidence of coral-inhabiting crabs (Cryptochiridae) and its implications for growth and paleobiogeography. Sci Rep 6:23443CrossRefGoogle Scholar
  165. Knaust D (2012) Trace fossil systematics. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64. Elsevier, Amsterdam, pp 9–102Google Scholar
  166. Knaust D (2019) The enigmatic trace fossil Tissoa de Serres, 1840. Earth Sci Rev 188:123–147Google Scholar
  167. Lamouroux JVF (1816) Histoire des Polypiers Coralligènes Flexibles, Vulgairement Nommés Zoophytes. F. Poisson, CaenCrossRefGoogle Scholar
  168. Lees JH, Thomas A (1918) The Ste. Genevieve Marls near Fort Dodge and their fauna. Proc Iowa Acad Sci 25:599–616Google Scholar
  169. Lehner L (1937) Fauna und Flora der frankischen albüberdeckenden Kreide. Palaeontographica 87A:159–165Google Scholar
  170. Leymerie A (1842) Suite de mémoire sur le terrain Crétacé du département de l’Albe. Mem Soc Géol France 1(série 4):1–34Google Scholar
  171. Li G (1997) Early Cambrian phosphate-replicated endolithic algae from Emei, Sichuan, SW China. Bull Nat Mus Nat Sci 10:193–216Google Scholar
  172. Linck O (1949) Fossile Bohrgänge (Anobichnium simile n.g. n.sp.) an einem Keuperholz. N Jb Mineral Geol Paläontol, B 4–6:180–185Google Scholar
  173. Loeblich AR, Tappan H (1964) Sarcodina, chiefly “Thecamoebians”, Foraminiferida. In: Moore RC (ed) Treatise on Invertebrate Paleontology, Part C - Protista/Protoctista 2. University of Kansas Press, Lawrence, pp C1–C900Google Scholar
  174. Lopes RP, Pereira JC (2018) Molluscan grazing traces (ichnogenus Radulichnus Voigt, 1977) on a Pleistocene bivalve from southern Brazil, with the proposal of a new ichnospecies. Ichnos.  https://doi.org/10.1080/10420940.2018.1532898
  175. Low ME, Guinot D (2010) Feldmannius nom. nov. for Feldmannia Casadío, Marenssi & Santillana, “30-09-2001”, preoccupied by Feldmannia Guinot & Tavares, “28 septembre 2001”: a case of 48-hour precedence. Zootaxa 2568:67–68CrossRefGoogle Scholar
  176. Macquart PJM (1838) Diptères Exotiques Nouveaux ou Peu Connus, Tome prémier, 2eme partie. Roret, ParisGoogle Scholar
  177. Mägdefrau K (1932) Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläontol Z 14:150–160CrossRefGoogle Scholar
  178. Mägdefrau K (1937) Lebensspuren fossiler “Bohr” = Organismen. Beiträge zur naturkundlichen Forschung in Südwestdeutschland 2:54–67Google Scholar
  179. Magwood JPA (1992) Ichnotaxonomy: a burrow by any other name…? In: Maples CG, West RR (eds) Trace Fossils. Palaeontological Society of America, Knoxville, pp 15–33Google Scholar
  180. Malkowski K (1975) Attachment scars of the brachiopod Coenothyris vulgaris (Schlotheim, 1820) from the Muschelkalk of Upper Silesia. Acta Geol Polonica 25:277–283Google Scholar
  181. Mantell GA (1850) A Pictorial Atlas of Fossil Remains, Consisting of Coloured Illustrations Selected from Parkinson’s “Organic Remains of a Former World” and Artis’s “Antediluvian Phytology”. H. G. Bohn, LondonGoogle Scholar
  182. Marek J (1982) Runia runica ichnogen. et ichnosp. nov., a new sponge boring from the Silurian of Bohemia. Acta Universitatis Carolinae, Geologica 4:401–408Google Scholar
  183. Martinell J, Domènech R (2009) Commensalism in the fossil record: Eunicid polychaete bioerosion on Pliocene solitary corals. Acta Palaeontol Polonica 54:143–154CrossRefGoogle Scholar
  184. Martinell J, Domènech R, Bromley RG (1999) Mysterious boring hidden within the hinge plates of heterodont bivalves. Bull Geol Soc Denmark 45:161–163Google Scholar
  185. Mayer G (1952) Lebensspuren von Bohrorganismen aus dem Unteren Hauptmuschelkalk (Trochitenkalk) des Kraichgaus. N Jb Geol Paläontol, Mh 1952:450–456Google Scholar
  186. Mayer K (1872) Systematisches Verzeichnis der Versteinerungen des Helvetian der Schweiz und Schwabens. Schabelitz’sche Buchhandlung, ZürichCrossRefGoogle Scholar
  187. Mayoral E (1987a) Acción bioerosiva de Mollusca (Gastropoda, Bivalvia) en el Plioceno inferior de la Cuenca del Bajo Guadalquivir. Rev Española Paleontol 2:49–58Google Scholar
  188. Mayoral E (1987b) Stellichnus nov. icnogen., huellas de incrustación atribuidas a Paravinella nov. gen. (Bryozoa, Ctenostomata) de la Formación Arenas de Huelva (Plioceno inferior) en la Cuenca del Bajo Guadalquivir (Espana). Rev Española Paleontol 2:33–40Google Scholar
  189. Mayoral E (1988) Microperforaciones (Tallophyta) sobre bivalvia del Plioceno del Bajo Guadalquivir. Importancia paleoecologica. Estudios Geologicos 44:301–316Google Scholar
  190. Mayoral E (1991) Actividad bioerosiva de Briozoos Ctenostomados en el Ordovícico Superior de la zona cantábrica del Macizo Hespérico (Cabo Vidrias, Oviedo). Rev Española Paleontol 6:27–36Google Scholar
  191. Mayoral E, Gutiérrez Marco JC, Martinell J (1994) Primas evidencas de briozoos perforantes (Ctenostomata) en braquiópodos Ordovícicos de los Montes de Toledo (Zona centroibérica Meridional, España). Rev Española Paleontol 9:185–194Google Scholar
  192. McCoy F (1850) On some new genera and species of Silurian Radiata in the collection of the University of Cambridge. Ann Mag Nat Hist (2nd series) 6:270–290Google Scholar
  193. McCoy F (1855) Description of the British Palæozoic Fossils in the Geological Museum of the University of Cambridge. Cambridge University Press, CambridgeGoogle Scholar
  194. McKinney FK (2009) Bryozoan-hydroid symbiosis and a new ichnogenus, Caupokeras. Ichnos 16:193–201CrossRefGoogle Scholar
  195. McLoughlin N, Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H (2009) Ichnotaxonomy of microbial trace fossils in volcanic glass. J Geol Soc London 166:1–11CrossRefGoogle Scholar
  196. Mercier J (1936) Zoothylacies d’Echinide fossile provoquées par un Crustacé: Castexia duvillei nov. gen., nov. sp. Bull Soc Géol France (série 5) 6:149–154Google Scholar
  197. Michalík J (1977) Systematics and ecology of Zeilleria Bayle and other brachiopods in the uppermost Triassic of the West Carpathians. Geol Carpath 28:323–346Google Scholar
  198. Michalík J (1980) A palaeoenvironmental and palaeoecological analysis of the West Carpathian part of the northern Tethyan nearshore region in the latest Triassic times. Riv Italiana Paleontol Stratigr 85:1047–1064Google Scholar
  199. Michelin H (1846) Note sur différentes espèces du genre Vioa (famille des Spongiaires). In: Guérin-Méneville MD (ed) Zoologique, par la Société Cuvierienne. Au Bureau de la Revue Zoologique, Paris, pp 56–60Google Scholar
  200. Michelin H (1847) Iconographie Zoophytologique. Bertrand, Paris [1840–1847; text + atlas]Google Scholar
  201. Michelotti G (1861) Études sur le Miocène Inférieur de l’Italie septentrionale. Société Hollandaise des Sciences à Harlem, Les Héritiers Loosjes, HarlemGoogle Scholar
  202. Mikuláš R (1992) Early Cretaceous borings from Štramberk (Czechoslovakia). Časopis pro Mineralogii a Geologii 37:297–312Google Scholar
  203. Mikuláš R, Cílek V (1998) Terrestrial insect bioerosion and the possibilities of its fossilization (Holocene to Recent, Czech Republic). Ichnos 5:325–333CrossRefGoogle Scholar
  204. Mikuláš R, Dvořák Z (2002) Vrtby v drevitych tkanich stromovych kapradin rodu Tempskya v ceske kridove panvi [Borings in xylic tissues of the tree fern Tempskya in the Bohemian Cretaceous Basin, Czech Republic]. Zpravy o geologickych vyzkumech 2002:129–131Google Scholar
  205. Mikuláš R, Dvorák Z, Pek I (1998) Lamniporichnus vulgaris igen. et isp. nov.: traces of insect larvae in stone fruits of hackberry (Celtis) from the Miocene and Pleistocene of the Czech Republic. J Czech Geol Surv 43:277–280Google Scholar
  206. Mikuláš R, Kadlecová E, Fejfar O, Dvořák Z (2006) Three new ichnogenera of biting and gnawing traces on reptilian and mammalian bones: a case study from the Miocene of the Czech Republic. Ichnos 13:113–127CrossRefGoogle Scholar
  207. Morningstar H (1922) Pottsville Fauna of Ohio. Bull Geol Surv Ohio 25:1–312Google Scholar
  208. Morris J (1851) Palaeontological notes. Ann Mag Nat Hist (2nd series) 8:85–90Google Scholar
  209. Müller J (1851) Monographie der Petrefacten der Aachener Kreideformation. Henry & Cohen, BonnGoogle Scholar
  210. Müller G (1968) Bohr-Röhren von unbekannten Anneliden und anderen Organismen in unterdevonischen Brachiopodenklappen aus der Eifel und dem Siegerland, Rheinisches Schiefergebirge. Dissertation, Universität zu KölnGoogle Scholar
  211. Müller AH (1977) Zur Ichnologie der subherzynen Oberkreide (Campan). Z Geol Wiss Berlin 5:881–897Google Scholar
  212. Muñiz F, de Gibert JM, Esperante R (2010) First trace-fossil evidence of bone eating worms in whale carcasses. Palaios 25:269–273CrossRefGoogle Scholar
  213. Murphy AE, Williams JD (2013) New records of two trypetesid burrowing barnacles (Crustacea: Cirripedia: Acrothoracica: Trypetesidae) and their predation on host hermit crab eggs. J Mar Biol Ass U K 93:107–133CrossRefGoogle Scholar
  214. Muszer J, Uglik M (2013) Palaeoenvironmental reconstruction of the upper Visean Paprotnia Beds (Bardo Unit, Polish Sudetes) using ichnological and palaeontological data. Geol Q 57:365–384Google Scholar
  215. Nardo GD (1833) Spongiariorum classificatio. Isis—encyclopädische Zeitschrift, vorzüglich für Naturgeschichte, vergleichende Anatomie und Physiologie 1833:519–524Google Scholar
  216. Nardo GD (1845) Alcune tracce d’animali parassiti delle Placune. Atti della sesta riunione degli scienziati Italiani tenuta in Milano nel Settembre del MDCCCXLIV. Pirola, Milano, pp 428–430Google Scholar
  217. Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnol Oceanogr 11:92–108CrossRefGoogle Scholar
  218. Neumann C, Wisshak M (2009) Gastropod parasitism on Late Cretaceous to early Paleocene holasteroid echinoids – evidence from Oichnus halo isp. n. Palaeogeogr Palaeoclimatol Palaeoecol 284:115–119CrossRefGoogle Scholar
  219. Neumann C, Wisshak M, Bromley RG (2008) Boring a mobile domicile: an alternative to the conchiculous life habit. In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion. Springer, Berlin Heidelberg, pp 307–328CrossRefGoogle Scholar
  220. Nielsen JK (2002) Borings formed by Late Cretaceous endobiontic foraminifers within larger benthic foraminifers. Acta Palaeontol Polonica 47:673–678Google Scholar
  221. Nielsen JK, Görmüş M (2004) Ichnotaxonomy and ethology of borings in shallow-marine benthic foraminifers from the Maastrichtian and Eocene of northwestern and southwestern Turkey. Riv Italiana Paleontol Stratigr 110:493–501Google Scholar
  222. Nielsen KSS, Nielsen JK (2001) Bioerosion in Pliocene to late Holocene tests of benthic and planktonic foraminiferans, with a revision of the ichnogenera Oichnus and Tremichnus. Ichnos 8:99–116CrossRefGoogle Scholar
  223. Nielsen KSS, Nielsen JK, Bromley RG (2003) Palaeoecological and ichnological significance of microborings in Quaternary Foraminifera. Palaeontologica Electronica 6:1–13Google Scholar
  224. Norman AM (1897) Museum Normanianum, or A catalogue of the Invertebrata of Europe, and the Arctic and North Atlantic oceans, which are contained in the collection of the Rev. Canon A. M. Norman. No. 9, Morton, Houghton-Le-SpringGoogle Scholar
  225. Norman AM (1903) New generic names for some Entomostraca and Cirripedia. Ann Mag Nat Hist (7th series) 11:367–369Google Scholar
  226. Oekentorp K (1969) Kommensalismus bei Favosiden. Münstersche Forsch Geol Paläontol 12:165–217Google Scholar
  227. Olempska E, Wacey D (2016) Ambient inclusion trails in Palaeozoic crustaceans (Phosphatocopina and Ostracoda). Palaeogeogr Palaeoclimatol Palaeoecol 441:949–958CrossRefGoogle Scholar
  228. Oliver WA Jr (1983) Symbioses of Devonian rugose corals. Mem Ass Australasian Palaeontol 1:261–274Google Scholar
  229. Paes Neto VD, Parkinson AH, Pretto FA, Soares MB, Schwanke C, Schultz CL, Kellner AW (2016) Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 453:30–41CrossRefGoogle Scholar
  230. Palmer TJ, Palmer CD (1977) Faunal distribution and colonization strategy in a Middle Ordovician hardground community. Lethaia 10:179–199CrossRefGoogle Scholar
  231. Palmer TJ, Plewes C (1993) Borings and bioerosion in fossils. Geol Today 9:138–142CrossRefGoogle Scholar
  232. Palmer TJ, Wilson MA (1988) Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31:939–949Google Scholar
  233. Parkinson AH (2016) Traces of Insect Activity at Cooper’s D Fossil Site (Cradle of Humankind, South Africa). Ichnos 23:322–339CrossRefGoogle Scholar
  234. Pemberton SG, Jones B, Edgecombe G (1988) The influence of Trypanites in the diagenesis of Devonian stromatopoids. J Paleontol 62:22–31CrossRefGoogle Scholar
  235. Peña LE (1971) Evidencia de insectos en maderas petrificadas halladas en lugares adyacentes al Estrecho de Magallanes. Annales del Museo de Historia Natural de Valparaíso 4:345–348Google Scholar
  236. Pether J (1995) Belichnus new ichnogenus, a ballistic trace on mollusc shells from the Holocene of the Benguela region, South Africa. J Paleontol 69:171–181CrossRefGoogle Scholar
  237. Petrov AV (2013) New ichnotaxon Megascolytinus zherikhini (Coleoptera: Curculionidae: Scolytinae) from Upper Cretaceous deposits of Mongolia. Paleontol J 47:597–600CrossRefGoogle Scholar
  238. Philippi A (1843) Rhopalaea ein neues Genus der einfachen Ascidien. Archiv für Anatomie und Physiologie 1:45–47Google Scholar
  239. Pickerill RK (1994) Nomenclature and taxonomy of invertebrate trace fossils. In: Donovan SK (ed) The Palaeobiology of Trace Fossils. Wiley, London, pp 3–42Google Scholar
  240. Pickerill RK, Donovan SK, Portell RW (2001) Caulostrepsis spiralis isp. nov., Miocene Grand Bay Formation of Carriacou (Grenadines, Lesser Antilles). Ichnos 8:261–264CrossRefGoogle Scholar
  241. Pirrone CA, Buatois LA (2016) Bioeroded dinosaur bones: novel signatures of necrophagous activity in a Cretaceous continental environment. Ichnos 23:340–348CrossRefGoogle Scholar
  242. Pirrone CA, Buatois LA, Bromley RG (2014) Ichnotaxobases for bioerosion trace fossils in bones. J Paleontol 88:195–203CrossRefGoogle Scholar
  243. Plewes CR (1996) Ichnotaxonomic studies of Jurassic endoliths. Unpublished Dissertation, University of Wales, AberystwythGoogle Scholar
  244. Plewes CR, Palmer T, Haynes J (1993) A boring foraminiferan from the Upper Jurassic of England and northern France. J Micropalaeontol 12:83–89CrossRefGoogle Scholar
  245. Pleydell SM, Jones B (1988) Boring of various faunal elements in the Oligocene-Miocene Bluff Formation of Grand Cayman, British West Indies. J Paleontol 62:348–367CrossRefGoogle Scholar
  246. Plusquellec Y (1968) Commensaux des tabulés et stromatoporoïdes du Dévonien armoricain. Annales de la Société Géologique du Nord 88:47–56Google Scholar
  247. Pohowsky RA (1978) The boring ctenostomate Bryozoa: taxonomy and paleobiology based on cavities in calcareous substrata. Bull Am Paleontol 73:1–192Google Scholar
  248. Pokorný R, Štofik M (2017) Evidence of bioerosive structures in Quaternary glaciomarine sediments from southwestern Iceland. Ichnos 24:204–221CrossRefGoogle Scholar
  249. Portlock JE (1843) Raport on the Geology of the County of Londonderry, and of Parts of Tyrone and Fermanagh. Milliken, DublinGoogle Scholar
  250. Pratje O (1922) Fossile kalkbohrende Algen (Chaetophorites gomontoides) in Liaskalken. Zentralblatt für Mineralogie, Geologie und Paläontologie [1922]:229–301Google Scholar
  251. Price AW (1916) Notes on the Paleontology of Raleigh, Wyoming, McDowell and adjacent counties – Marine invertebrates from the Pottsville Series. In: Krebs CE, Teets DD, White IC (eds) Raleigh County and the Western Portions of Mercer and Summers Counties. West Virginia Geological Survey, Wheeling, pp 662–746Google Scholar
  252. Quenstedt FA (1849) Petrefaktenkunde Deutschlands – Die Cephalopoden [text volume & atlas]. Ludwig Friedrich Fues, TübingenGoogle Scholar
  253. Quenstedt FA (1858) Der Jura. Laupp, TübingenGoogle Scholar
  254. Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Courier Forschungsinstitut Senckenberg 138:1–185Google Scholar
  255. Radtke G, Golubić S (2005) Microborings in mollusk shells, Bay of Safaga, Egypt: morphometry and ichnology. Facies 51:118–134CrossRefGoogle Scholar
  256. Radtke G, Glaub I, Vogel K, Golubić S (2010) A new dichotomous microboring, Abeliella bellafurca isp. nov., distribution, variability and biological origin. Ichnos 17:25–33CrossRefGoogle Scholar
  257. Radtke G, Campbell SE, Golubić S (2016) Conchocelichnus seilacheri igen. et isp. nov., a complex microboring trace of bangialean rhodophytes. Ichnos 23:228–236CrossRefGoogle Scholar
  258. Radwański A, Bałuk W (1997) A biogenic paradigm of shells of the clavatulid gastropods: the trace fossil Clavatulicola evaephilus ichnogen. et ichnosp. n. from the middle Miocene localities Korytnica (Holy Cross Mountains, Poland) and Grund (Vienna Basin, Austria). Acta Geol Polonica 47:199–210Google Scholar
  259. Rasser MW, Vallon LH, Salvador RB (2016) Perforations of freshwater snail shells from the Miocene of Germany: Nihilichnus covichi n. isp. Ichnos 23:222–227CrossRefGoogle Scholar
  260. Rhumbler L (1909) Die Foraminiferen (Thalamophoren) der Plankton-Expedition. Lipsius & Tischer, KielGoogle Scholar
  261. Rindsberg AK (2012) Ichnotaxonomy: finding patterns in a welter of information. In: Knaust D, Bromley RG (eds) Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology 64. Elsevier, Amsterdam, pp 45–78Google Scholar
  262. Rinehart LF, Lucas SG, Spielmann JA (2006) Bite marks on tetrapod bones from the Upper Triassic Chinle Group representing a new ichnogenus. New Mexico Mus Nat Hist Sci Bull 37:160–163Google Scholar
  263. Roberts EM, Rogers RR, Foreman BZ (2007) Continental insect borings in dinosaur bone: examples from the Late Cretaceous of Madagascar and Utah. J Paleontol 61:201–208CrossRefGoogle Scholar
  264. Robinson J, Lee D (2008) Brachiopod pedicle traces: recognition of three separate types of trace and redefinition of Podichnus centrifugalis Bromley & Surlyk, 1973. Fossils Strata 54:219–225Google Scholar
  265. Rodríguez-Tovar FJ, Uchman A, Puga-Bernabéu A (2015) Borings in gneiss boulders in the Miocene (upper Tortonian) of the Sorbas Basin, SE Spain. Geol Mag 152:287–297CrossRefGoogle Scholar
  266. Rosso A (2008) Leptichnus tortus isp. nov., a new cheilostome etching and comments on other bryozoan-produced trace fossils. Studi Trentini di Scienze Naturali/Acta Geol 83:75–85Google Scholar
  267. Roux W (1887) Über eine im Knochen lebende Gruppe von Fadenpilzen (Mycelites ossifragus). Zeitschrift für wissenschaftliche Zoologie 45:227–254Google Scholar
  268. Rozhnov S (1989) New data about rhipidocystids (Eocrinoidea). In: Kaljo DL (ed) Fossil and recent echinoderm researches [In Russian]. Akademia Nauk Estonoskoi SSR, Tallinn, pp 38–57Google Scholar
  269. Ruedemann R (1925) The Utica and Lorraine Formations of New York, Part 2. New York State Mus Bull 262:1–171Google Scholar
  270. Ruggiero E, Raia P (2014) Oichnus taddeii, a new fossil trace produced by capulids on brachiopod shells. Spanish J Palaeontol 29:15–24Google Scholar
  271. Sá AA, Gutiérrez-Marco JC (2015) Aroucaichnus igen. nov. y otros icnofósiles singulares del Ordovícico del Geoparque Arouca (Portugal). Boletín de la Sociedad Geológica del Perú 110:8–23Google Scholar
  272. Santos A, Mayoral E (2006) Bioerosive structures of sclerozoan foraminifera from the lower Pliocene of southern Spain: a contribution to the palaeoecology of marine hard substrate communities. Palaeontology 49:719–732CrossRefGoogle Scholar
  273. Santos A, Mayoral E, Muñiz F (2003) New trace fossils produced by etching molluscs from the Upper Neogene of the southwestern Iberian Peninsula. Acta Geol Polonica 53:181–188Google Scholar
  274. Santos A, Mayoral E, Muñiz F (2005) Bioerosion scars of acorn barnacles from the southwestern Iberian peninsula, Upper Neogene. Riv Italiana Paleontol Stratigr 111:181–189Google Scholar
  275. Santos A, Mayoral E, Bromley RG (2011) Bioerosive structures from Miocene marine mobile-substrate communities in southern Spain, and description of a new sponge boring. Palaeontology 54:535–545CrossRefGoogle Scholar
  276. Santos A, Mayoral E, Baarli G, da Silva CM, Cacháo M, Johnson MD (2012) Symbiotic association of a pyrgomatid barnacle with a coral from a volcanic middle Miocene shoreline (Porto Santo, Madeira Archipelago, Portugal). Palaeontology 55:173–182CrossRefGoogle Scholar
  277. Santos A, Mayoral E, Villas E, Herrera Z, Ortega G (2014) First record of Podichnus in orthide brachiopods from the Lower Ordovician (Tremadocian) of NW Argentina and its relation to the early use of an ethological strategy. Palaeogeogr Palaeoclimatol Palaeoecol 399:67–77CrossRefGoogle Scholar
  278. Santos A, Mayoral E, Dumont CP, da Silva CM, Ávila SP, Baarli BG, Cachão M, Johnson ME, Ramalho RS (2015) Role of environmental change in rock-boring echinoid trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 432:1–14CrossRefGoogle Scholar
  279. Schindewolf OH (1962) Parasitäre Thallophyten in Ammoniten-Schalen. Paläontol Z 36:206–215CrossRefGoogle Scholar
  280. Schlaudt CM, Young K (1960) Acrothoracic barnacles from the Texas Permian and Cretaceous. J Paleontol 34:903–907Google Scholar
  281. Schlirf M (2006) Linkichnus terebrans new ichnogenus et ichnospecies, an insect boring from the Late Triassic of the Germanic Basin, southern Germany. Ichnos 13:277–280CrossRefGoogle Scholar
  282. Schloz W (1972) Zur Bildungsgeschichte der Oolithenbank (Hettangium) in Baden-Württemberg. Arbeiten aus dem Institut für Geologie und Paläontologie der Universität Stuttgart 67:101–212Google Scholar
  283. Schmidt H (1992) Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). Frankfurter Geowissenschaftliche Arbeiten, A 12:1–228Google Scholar
  284. Schönberg CHL, Tapanila L (2006) The bioeroding sponge Aka paratypica, a modern tracemaking analogue for the Paleozoic ichnogenus Entobia devonica. Ichnos 13:147–157CrossRefGoogle Scholar
  285. Schönberg CHL, Fang JKH, Carballo JL (2017) Bioeroding sponges and the future of coral reefs. In: Carballo J, Bell J (eds) Climate Change, Ocean Acidification and Sponges. Springer, Berlin Heidelberg, pp 179–372CrossRefGoogle Scholar
  286. Seguenza G (1879) Le formazioni Terziarie nella Provincia di Reggio (Calabria). Coi tipi del Salviucci, RomeCrossRefGoogle Scholar
  287. Seguenza G (1882) Paleontologia del Cretaceo Medio delle Provincie Meridionali d’Italia. Atti della Reale Accademia dei Lincei, Memorie della Classe di scienze fisiche, matematiche e naturali 12:101–214Google Scholar
  288. Seilacher A (1968) Swimming habits of belemnites – recorded by boring barnacles. Palaeogeogr Palaeoclimatol Palaeoecol 4:279–285CrossRefGoogle Scholar
  289. Silén L (1946) On two new groups of Bryozoa living in shells of molluscs. Arkiv för Zoologi 38B:1–7Google Scholar
  290. Sismonda E (1871) Matériaux pour servir à la Paléontologie du terrain tertiaire du Piémont. Memorie della Reale Accademia delle Scienze di Torino, Serie seconda 25:257–361Google Scholar
  291. Smith J (1910) Carboniferous rocks of the Solway, Scotland. T Geol Soc Glasgow 14:30–59CrossRefGoogle Scholar
  292. Sokolov BS (1948) Kommensalizm i Favositid. Izvestija Imperatorskoj Akademii nauk, seria biologicheskaja 1:101–110Google Scholar
  293. Solle G (1938) Die ersten Bohr-Spongien im europäischen Devon und einige andere Spuren. Senckenb Lethaea 20:154–178Google Scholar
  294. Stafford ES, Dietl GP, Gingras MP, Leighton LR (2015) Caedichnus, a new ichnogenus representing predatory attack on the gastropod shell aperture. Ichnos 22:87–102CrossRefGoogle Scholar
  295. Stephenson LW (1941) The large invertebrate fossils of the Navarro Group of Texas. Publ Univ Texas 4101:1–641Google Scholar
  296. Stephenson LW (1952) Larger invertebrate fossils of the Woodbine formation (Cenomanian) of Texas. U S Geol Surv, Prof Pap 242:1–226Google Scholar
  297. Stiller F (2005) An Early Jurassic Talpina-dominated assemblage of borings in bivalve shells from southern Hunan, China, with remarks on the ichnogenus Talpina Hagenow, 1840. Acta Palaeontol Sinica 44:396–411Google Scholar
  298. Süss H (1979) Durch Protophytobia cupressorum gen. nov., sp. nov. (Agromyzidae, Diptera) verursachte Markflecke in einem Holz von Juniperoxylon aus dem Tertiar von Süd-Limburg (Niederlande) und der Nachweis von Markflecken in einer rezenten Callitris- Art. Feddes Repertorium 90:165–172CrossRefGoogle Scholar
  299. Süss H, Müller-Stoll WR (1975) Durch Palaeophytobia platani n. g., n. sp. (Agromyzidae, Diptera) verursachte Markflecken im Holz fossiler Platanen aus dem ungarischen Miozän. Wissenschaftliche Zeitschrift der Humboldt-Universität Berlin, Mathematisch-Naturwissenschaftliche Reihe 24:515–519Google Scholar
  300. Talent JA (1963) The Devonian of the Mitchell and Wentworth rivers. Geol Surv Victoria, Mem 24:1–118Google Scholar
  301. Tapanila L (2005) Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia 38:89–99CrossRefGoogle Scholar
  302. Tapanila L (2006) Devonian Entobia borings from Nevada, with a revision of Topsentopsis. J Paleontol 80:760–767CrossRefGoogle Scholar
  303. Tapanila L (2008) The medium is the message: imaging a complex microboring (Pyrodendrina cupra igen. n., isp. n.) from the early Paleozoic of Anticosti Island, Canada. In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion. Springer, Berlin Heidelberg, pp 123–145CrossRefGoogle Scholar
  304. Tapanila L, Ekdale A (2007) Early history of symbiosis in living substrates: trace-fossil evidence from the marine record. In: Miller W III (ed) Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp 345–355CrossRefGoogle Scholar
  305. Tapanila L, Holmer LE (2006) Endosymbiosis in Ordovician-Silurian corals and stromatoporoids: a new lingulid and its trace from eastern Canada. J Paleontol 80:750–759CrossRefGoogle Scholar
  306. Tapanila L, Roberts EM (2012) The earliest evidence of holometabolan insect pupation in conifer wood. PLoS ONE 7:e31668CrossRefGoogle Scholar
  307. Tavernier A, Golubić S (1993) Pliocene microboring assemblages in shells of the Purisima Formation (Capitola, California). Bollettino della Società Paleontologica Italiana, Special 1:405–414Google Scholar
  308. Tavernier A, Campbell SE, Golubić S (1992) A complex marine shallow-water boring trace, Dendrorete balani n. ichnogen. et ichnospec. Lethaia 25:303–310CrossRefGoogle Scholar
  309. Taylor PD, Wilson MA, Bromley RG (1999) A new ichnogenus for etchings made by cheilostome bryozoans into calcareous substrates. Palaeontology 42:595–604CrossRefGoogle Scholar
  310. Taylor PD, Wilson MA, Bromley RG (2013) Finichnus, a new name for the ichnogenus Leptichnus Taylor, Wilson and Bromley 1999, preoccupied by Leptichnus Simroth, 1896 (Mollusca, Gastropoda). Palaeontology 56:456CrossRefGoogle Scholar
  311. Teichert C (1945) Parasitic worms in Permian brachiopod and pelecypod shells in Western Australia. Am J Sci 243:197–209CrossRefGoogle Scholar
  312. Terquem O (1855) Paléontologie de l’étage infèrieur de la formation liasique de la province de Luxembourg: Grand-Duché (Hollande), et de Hettange, du département de la Moselle. Mém Soc Géol France 2(série 5):219–343Google Scholar
  313. Terquem O, Piette É (1865) Paléontologie du Lias Inférieur de l’Est de la France. Mém Soc Géol France, 2ème série 8:1–175Google Scholar
  314. Thenius E (1979) Lebensspuren von Ephemeropteren-Larven aus dem Jung-Tertiär des Wiener Beckens. Ann Nat Mus Wien 82:177–188Google Scholar
  315. Thenius E (1988) Lebensspuren von aquatischen Insektenlarven aus dem Jungtertiär Niederösterreichs. Beitr Paläontol Österr 14:1–17Google Scholar
  316. Thomas AO (1911) A fossil burrowing sponge from the Iowa Devonian. Bull Lab Nat Hist State Univ Iowa 6:165–169Google Scholar
  317. Thurmann J, Étallon A (1964) Lethea Bruntrutana ou études paléontologiques et stratigraphiques dur les terrains Jurassique supérieurs du Jura Bernois et en particulier des environs de Porrentruy. Nouveaux Mémoires de la Société Helvetique des Sciences Naturelles 20:355–500Google Scholar
  318. Tomlinson JT (1953) A burrowing barnacle of the genus Trypetesa (order Acrothoracica). J Washington Acad Sci 43:373–381Google Scholar
  319. Tomlinson JT (1963) Acrothoracican barnacles in Paleozoic myalinids. J Paleont 37:164–166Google Scholar
  320. Tomlinson JT (1969) The burrowing barnacles (Cirripedia: Order Acrothoracica). U S Nat Mus Bull 296:1–162CrossRefGoogle Scholar
  321. Tribollet A, Radtke G, Golubić S (2011) Bioerosion. In: Reitner J, Thiel V (eds) Encyclopedia of Geobiology. Springer, Dordrecht, pp 117–134CrossRefGoogle Scholar
  322. Turquier Y (1967) Description d’un nouveau Trypetesa Norman (= Alcippe Hancock), cirripède acrothoracique des côtes françaises de la Manche. Cah Biol Mar 8:75–87Google Scholar
  323. Turquier Y (1976) Etude de quelques cirripèdes acrothoraciques de Madagascar. II. Description de Trypetesa spinulosa n. sp. Bull Soc Zool France 101:559–574Google Scholar
  324. Uchman A, Rattazzi B (2018) A new etching trace from Savignone Conglomerate (Oligocene), NW Italy, produced probably by limpet gastropods. Acta Geol Pol 68:651–662Google Scholar
  325. Uchman A, Gaigalas A, Melesyte M, Kazakauska V (2007) The trace fossil Asthenopodichnium lithuanicum sp. nov. from Late Neogene brown-coal deposits. Lithuania. Geol Q 51:329–336Google Scholar
  326. Uchman A, Stachacz M, Salamon K (2018a) Spirolites radwanskii igen. et isp. nov. - a vermetid gastropod etching trace from the middle Miocene rocky coast of the Paratethys. Poland. J Paleontol 92:883–895CrossRefGoogle Scholar
  327. Uchman A, Wisshak M, Rodríguez-Tovar FJ (2018b) The bivalve boring Cuenulites amygdaloides nov. isp. in siliceous sponges from the Upper Cretaceous of Germany. Geobios 51:481–486CrossRefGoogle Scholar
  328. Ulrich EO (1879) Descriptions of new genera and species of fossils from the Lower Silurian about Cincinnati. J Cincinnati Soc Nat Hist 2:8–30Google Scholar
  329. Ulrich EO (1890) New Lower Silurian Bryozoa. J Cincinnati Soc Nat Hist 12:173–198Google Scholar
  330. Utinomi H (1962) Occurrence of a Trypetesa in Japan. Dohutsugaku Zasshi [Zoological Magazine, Tokyo] 71:399Google Scholar
  331. Vaillant L (1909) Observations paléontologiques faites dans les sables Éocènes Landéniens aux environs d’Arras. Bull Soc Géol France 9:277–282Google Scholar
  332. Vialov OS, Nessov LA (1974) Posmertnye povrezhdenija pancirej nekotorykh rannemelovykh cherepakh kosterazrushayushhimi organizmami [Postmortem injuries of shells of some early Cretaceous turtles by bone-damaging organisms]. Paleontologicheskij Sbornik 11:99–103Google Scholar
  333. Vinn O, Wilson MA, Mõtus MA (2014) The earliest giant Osprioneides borings from the Sandbian (Late Ordovician) of Estonia. PLoS ONE 9:e99455CrossRefGoogle Scholar
  334. Vitális S (1961) Lebensspuren im Salgotarjaner Braunkohlenbecken. Annales Universitatis Scientiae Budapest Rolando Eötvös Nomintae, Sectio Geologica 1961:121–132Google Scholar
  335. Vogel K, Golubić S, Brett CE (1987) Endolith associations and their relation to facies distribution in the Middle Devonian of New York State, USA. Lethaia 20:263–290CrossRefGoogle Scholar
  336. Voigt E (1959) Endosacculus moltkiae n. g. n. sp., ein vermutlicher fossiler Ascothoracide (Entomostr.) als Cystenbildner bei der Oktokoralle Moltkia minuta. Paläontol Z 33:211–223CrossRefGoogle Scholar
  337. Voigt E (1965) Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontol Z 39:193–211CrossRefGoogle Scholar
  338. Voigt E (1967) Über einen neuen acrothoraciden Cirripedier aus dem Essener Grünsand (Cenoman). Abh Nat Vereins Hamburg, N F 11:117–121Google Scholar
  339. Voigt E (1970) Endolithische Wurm-Tunnelbauten (Lapispecus cuniculus n. g. n. sp. und Dodecaceria(?) sp.) in Brandungsgeröllen der oberen Kreide im nördlichen Harzvorlande. Geol Rundsch 60:355–380CrossRefGoogle Scholar
  340. Voigt E (1971) Fremdskulpturen an Steinkernen von Polychaeten-Bohrgängen aus der Maastrichter Tuffkreide. Paläontol Z 45:144–153CrossRefGoogle Scholar
  341. Voigt E (1972) Über Talpina ramosa v. Hagenow 1840, ein wahrscheinlich zu den Phoronidea gehöriger Bohrorganismus aus der Oberen Kreide, nebst Bemerkungen zu den übrigen bisher beschriebenen kretazischen “Talpina”-Arten. Nachrichten der Akademie der Wissenschaften II (Mathematisch-physikalische Klasse) [1972]:93–126Google Scholar
  342. Voigt E (1973) lmmergentia cruciata (Mägdefrau) (Bryozoa, Ctenostomata) im Santon-Erz von Lengede-Broistedt bei Peine (BRD). Z Geol Wiss 1:991–1007Google Scholar
  343. Voigt E (1975) Tunnelbaue rezenter und fossiler Phoronoidea. Paläontol Z 49:135–167CrossRefGoogle Scholar
  344. Voigt E (1977) On grazing traces produced by the radula of fossil and recent gastropods and chitons. Geol J, Spec Issue 9:335–346Google Scholar
  345. Voigt E, Soule JD (1973) Cretaceous burrowing bryozoans. J Paleontol 47:21–33Google Scholar
  346. von Hagenow F (1840) Monographie der Rügen’schen Kreide-Versteinerungen, II. Abtheilung: Radiarien und Annulaten. Nebst Nachträgen zur ersten Abtheilung. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde [1849]:630–672Google Scholar
  347. Vosmaer GCJ (1887) Dr. H. G. Bronn’s Klassen und Ordnungen der Spongien (Porifera) wissenschaftlich dargestellt in Wort und Bild. C. F. Winter, LeibzigGoogle Scholar
  348. Walker MV (1938) Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proc U S Nat Mus 85:137–141CrossRefGoogle Scholar
  349. Wanner J (1938) Balanocrinus sundaicus n. sp. und sein Epöke aus dem Altmiocän der Insel Madura. N Jb Mineral Geol Paläontol, B 79:385–402Google Scholar
  350. Wetherell NT (1852) Note on a new species of Clionites. Ann Mag Nat Hist 10:354–355CrossRefGoogle Scholar
  351. Wilson MA, Palmer TJ (1988) Nomenclature of a bivalve boring from the Upper Ordovician of the midwestern United States. J Paleontol 62:306–308CrossRefGoogle Scholar
  352. Wilson MA, Palmer TJ (1998) The earliest Gastrochaenolites (Early Pennsylvanian, Arkansas, USA): an upper Paleozoic bivalve boring? J Paleontol 72:769–772CrossRefGoogle Scholar
  353. Wisshak M (2006) High-latitude Bioerosion: The Kosterfjord Experiment. Lecture Notes in Earth Sciences 109. Springer, Berlin HeidelbergGoogle Scholar
  354. Wisshak M (2008) Two new dwarf Entobia ichnospecies in a diverse aphotic ichnocoenosis (Pleistocene/Rhodes, Greece). In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion. Springer, Berlin Heidelberg, pp 213–233CrossRefGoogle Scholar
  355. Wisshak M (2017) Taming an ichnotaxonomical Pandora’s box: revision of dendritic and rosetted microborings (ichnofamily: Dendrinidae). Eur J Taxonomy 390:1–99Google Scholar
  356. Wisshak M, Neumann C (2018) Large dendrinids meet giant clam: the bioerosion trace fossil Neodendrina carnelia igen. et isp. n. in a Tridacna shell from Pleistocene-Holocene coral reef deposits, Red Sea. Egypt. Fossil Record 21:1–9CrossRefGoogle Scholar
  357. Wisshak M, Porter D (2006) The new ichnogenus Flagrichnus—a palaeoenvironmental indicator for cold-water settings? Ichnos 13:135–145CrossRefGoogle Scholar
  358. Wisshak M, Tapanila L (2008) Current Developments in Bioerosion. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  359. Wisshak M, Freiwald A, Lundälv T, Gektidis M (2005) The physical niche of bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In: Freiwald A, Roberts JM (eds) Cold-Water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 979–1001CrossRefGoogle Scholar
  360. Wisshak M, Seuß B, Nützel A (2008) Evolutionary implications of an exceptionally preserved Carboniferous microboring assemblage in the Buckhorn Asphalt lagerstätte (Oklahoma, USA). In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion. Springer, Berlin Heidelberg, pp 21–54CrossRefGoogle Scholar
  361. Wisshak M, Alexandrakis E, Hoppenrath M (2014) The diatom attachment scar Ophthalmichnus lyolithon igen. et isp. n. Ichnos 21:111–118CrossRefGoogle Scholar
  362. Wisshak M, Kroh A, Bertling M, Knaust D, Nielsen JK, Jagt JWM, Neumann C, Nielsen KSS (2015) In defence of an iconic ichnogenus – Oichnus Bromley, 1981. Ann Soc Geol Pol 85:445–451Google Scholar
  363. Wisshak M, Titschack J, Kahl W-A, Girod P (2017) Classical and new bioerosion trace fossils in Cretaceous belemnite guards characterised via micro-CT. Fossil Record 20:173–199CrossRefGoogle Scholar
  364. Wisshak M, Meyer N, Radtke G, Golubić S (2018) Saccomorpha guttulata: a new marine fungal microbioerosion trace fossil from cool- to cold-water settings. Paläontol Z 92:525–533CrossRefGoogle Scholar
  365. Xing L, Parkinson A, Ran H, Pirrone C, Roberts E, Zhang J, Burns M, Wang T, Choiniere J (2015) The earliest fossil evidence of bone boring by terrestrial invertebrates, examples from China and South Africa. Hist Biol 28:1108–1117CrossRefGoogle Scholar
  366. Zamora S, Mayoral E, Esteve J, Gámez-Vintaned JA, Santos A (2011) Exoskeletal abnormalities in paradoxidid trilobites from the Cambrian of Spain, and a new type of bite trace. Bull Geosci 86:665–673CrossRefGoogle Scholar
  367. Zonneveld J-P, Bartels WS, Gunnell GF, McHugh LP (2015) Borings in early Eocene turtle shell from the Wasatch Formation, South Pass, Wyoming. J Paleontol 89:802–820CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Senckenberg am Meer, Marine Research DepartmentWilhelmshavenGermany
  2. 2.Equinor ASAStavangerNorway
  3. 3.Geomuseum der WWU, Westfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations