, 65:12 | Cite as

Challenging asymmetric cements as indicators of vadose diagenesis: “pseudo-gravitational” cements from the lower Pliensbachian of the Traras Mountains in NW Algeria

  • Salim BelkhedimEmail author
  • Axel Munnecke
  • Miloud Benhamou
  • Abdelkrim Nemra
  • Radouane Sadji
Original Article


Asymmetric, pendant cements are considered good indicators for early lithification in the vadose zone. In the present study, asymmetric cements are recorded in thin-sections of a Lower Jurassic limestone from the Traras Mountains (northwest Algeria). Geopetal fabrics, however, indicate that these seemingly “pendant cements” are, in some places, oriented upwards, i.e., they have grown in the opposite direction from that expected, or they grew from grains towards the pore centers. These observations disprove their origin as gravitational cements precipitated from pendant water droplets on the undersides of grains as in the vadose zone. In contrast, a formation in the marine phreatic zone seems more probable. Under high-energy conditions, and after an early lithification stage with isopachous cements in the subtidal zone, strong tidally driven horizontal pore-water flow allowed sufficient seawater to pass through the slightly cemented but still highly permeable rock. Those grain sides, which were oriented towards the pore center, where faster flowing water prevailed, were more exposed to CaCO3-supersaturated percolating seawater and therefore the cements precipitated here show their greatest thickness. In relatively more protected areas around the margins of the pores, asymmetric cements are rarely developed. The resulting rock exhibits an unusual, heterogeneous cementation with preferential centripetal nucleation areas.


Geopetal fabrics Horizontal permeability Phreatic zone Early lithification Centripetal nucleation 



This study is a part of the PhD thesis of SB, funded by the Algerian Ministry of Higher Education and Scientific Research. We are very grateful to Birgit Leipner-Mata for preparation of the high-quality thin sections. We thank Michael Joachimski and Mattias López Correa (Erlangen) for their help with the cathodoluminescence and microdrill device, respectively, and Emilia Jarochowska for vivid discussions. We are also very grateful to Jim Hendry and an anonymous reviewer, as well as to editor-in-Chief Maurice Tucker for their critical but very constructive reviews that significantly improved the paper.


  1. Aissaoui DM, Purser BH (1983) Nature and origins of internal sediment in Jurassic limestones of Burgundy (France) and Fnoud (Algeria). Sedimentology 30:273–289CrossRefGoogle Scholar
  2. Ameur M (1999) Histoire d’une plate-forme carbonatée de la marge Sud-Téthysienne: l’autochtone des Traras (Algérie occidentale) du Trias Supérieur jusqu’au Bathonien Moyen: Documents des Laboratoires de Géologie Lyon, France, p 399Google Scholar
  3. Andrieu S, Brigaud B, Barbarand J, Lasseur E (2017) Linking early diagenesis and sedimentary facies to sequence stratigraphy on a prograding oolitic wedge: the Bathonian of western France (Aquitaine Basin). Mar Pet Geol 81:169–195CrossRefGoogle Scholar
  4. Andrieu S, Brigaud B, Barbarand J, Lasseur E (2018) The complex diagenetic history of discontinuities in shallow-marine carbonate rocks: new insights from high-resolution ion microprobe investigation of δ18O and δ13C of early cements. Sedimentology 65(2):360–399CrossRefGoogle Scholar
  5. Brett CE, Brookfield ME (1984) Morphology, faunas and genesis of Ordovician hardgrounds from southern Ontario, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 46:233–290CrossRefGoogle Scholar
  6. Brigaud B, Durlet C, Deconinck JF, Vincent B, Pucéat E, Thierry J, Trouiller A (2009a) Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on Middle Jurassic carbonates. Sediment Geol 222:181–206CrossRefGoogle Scholar
  7. Brigaud B, Durlet C, Deconinck JF, Vincent B, Thierry J, Trouiller A (2009b) The origin and timing of multiphase cementation in carbonates: impact of regional scale geodynamic events on the Middle Jurassic limestones diagenesis (Paris Basin, France). Sediment Geol 222:161–180CrossRefGoogle Scholar
  8. Brigaud B, Vincent B, Durlet C, Deconinck JF, Jobard E, Pickard N, Yven B, Landrein P (2014) Characterization and origin of permeability-porosity heterogeneity in shallow-marine carbonates: from core scale to 3D reservoir dimension (Middle Jurassic, Paris Basin, France). Mar Petrol Geol 57:631–651CrossRefGoogle Scholar
  9. Carpman N, Leijon M (2014) Measurements of tidal current velocities in the Folda Fjord, Norway, with the use of a vessel mounted ADCP. In: Proc ASME 2014 33rd Int Conf Ocean Offshore Arct Eng 8A: V08AT06A053Google Scholar
  10. Christ N, Immenhauser A, Wood RA, Darwich K, Niedermayr A (2015) Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds. Earth Sci Rev 151:176–226CrossRefGoogle Scholar
  11. Christ N, Maerz S, Kutschera E, Kwiecien O, Mutti M (2018) Palaeoenvironmental and diagenetic reconstruction of a closed-lacustrine carbonate system—the challenging marginal setting of the Miocene Ries Crater Lake (Germany). Sedimentology 65:235–262CrossRefGoogle Scholar
  12. Coimbra R, Immenhauser A, Olóriz F (2009) Matrix micrite δ13C and δ18O reveals synsedimentary marine lithification in Upper Jurassic Ammonitico Rosso limestones. Sediment Geol 219:332–348CrossRefGoogle Scholar
  13. Collin P-Y, Kershaw S, Crasquin-Soleau S, Feng Q (2009) Facies changes and diagenetic processes across the Permian-Triassic boundary event horizon, Great Bank of Guizhou, South China: a controversy of erosion and dissolution. Sedimentology 56:677–693CrossRefGoogle Scholar
  14. Csoma AÉ, Goldstein RH (2013) Diagenetic salinity cycles: a link between carbonate diagenesis and sequence stratigraphy. In: Morad S, Ketzer M, de Ros LF (eds) Linking diagenesis to sequence stratigraphy. Wiley, New York, pp 407–444CrossRefGoogle Scholar
  15. Dickson JAD (1966) Carbonate identification and genesis as revealed by staining. J Sediment Res 36:491–505Google Scholar
  16. Dickson JAD, Kenter JAM (2014) Diagenetic evolution of selected parasequences across a carbonate platform: late Paleozoic, Tengiz Reservoir, Kazakhstan. J Sediment Res 84:664–693CrossRefGoogle Scholar
  17. Durlet C, Loreau JP (1996) Inherent diagenetic sequence of hardgrounds resulting from marine ablation of exposure surfaces. Example of the Burgundy platform, Bajocian (France). CR Acad Sci Paris 323:389–396Google Scholar
  18. Elmi S, Marok A, Sebane A, Almeras Y (2009) Importance of the Mellala section (Traras Mountains, northwestern Algeria) for the correlation of the Pliensbachian–Toarcian boundary. Volumina Jurassica 7:37–45Google Scholar
  19. Emmanuel S, Berkowitz B (2007) Effects of pore-size controlled solubility on reactive transport in heterogeneous rock. Geophys Res Lett 34:L06404CrossRefGoogle Scholar
  20. Espinoza-Marzal RM, Scherer G (2010) Advances in understanding damage by salt crystallization. Acc Chem Res 43:897–905CrossRefGoogle Scholar
  21. Flügel E (2010) Microfacies of carbonate rocks: analysis, interpretation and implications, vol 2. Springer, BerlinCrossRefGoogle Scholar
  22. Given RK, Wilkinson BH (1985) Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. J Sediment Res 55(1):109–119Google Scholar
  23. Godet A, Durlet C, Spangenberg JE, Föllmi KB (2016) Estimating the impact of early diagenesis onisotope records in shallow-marine carbonates: a case study the Urgonian Platform in western Swiss Jura. Palaeogeogr Palaeoclimatol Palaeoecol 454:125–138CrossRefGoogle Scholar
  24. Godinho JRA, Gerke KM, Stack AG, Lee PD (2016) The dynamic nature of crystal growth in pores. Sci Rep 6:33086CrossRefGoogle Scholar
  25. Grammer GM, Crescini CM, McNeill D, Taylor LH (1999) Quantifying rates of syndepositional marine cementation in deeper platform environments—new insight into a fundamental process. J Sediment Res 69(1):202–207CrossRefGoogle Scholar
  26. Guardia P (1975) Géodynamique de la marge alpine du continent africain d’après l’étude de l’Oranie nord–occidentale (Algérie), Relations structurales et paléogéographiques entre Rif externe, le Tell et l’avant pays atlasique. PhD Thesis, Univ Nice, p 289Google Scholar
  27. Hart MB, Feist SE, Hakansson E, Heinberg C, Price GD, Leng MJ, Watkinson MP (2005) The Cretaceous–Palaeogene boundary succession at StevnsKlint, Denmark: foraminifers and stable isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 224:6–26CrossRefGoogle Scholar
  28. Hiatt EE, Pufahl PK (2014) Cathodoluminescence petrography of carbonate rocks: applications for understanding diagenesis, reservoir quality, and pore system evolution. In: Coulson (ed) Cathodoluminescence and its Application to Geoscience. Mineral Assoc Can, Short Course Series, V 45, Frederict, NB, pp 75–96Google Scholar
  29. Hood AVS, Wallace MW (2012) Synsedimentary diagenesis in a Cryogenian reef complex: ubiquitous marine dolomite precipitation. Sediment Geol 324:12–31CrossRefGoogle Scholar
  30. Immenhauser A, Creusen A, Esteban M, Vonhof HB (2000) Recognition and interpretation of polygenic discontinuity surfaces in the Middle Cretaceous Shuaiba, NahrUmr, and Natih Formations of northern Oman. GeoArabia 5:299–322Google Scholar
  31. Jenkyns HC, Jones CE, Gröcke DR, Hesselbo SP, Parkinson DN (2002) Chemostratigraphy of the Jurassic system: applications, limitations and implications for paleoceanography. J Geol Soc Lond 159:351–378CrossRefGoogle Scholar
  32. Knoerich A, Mutti M (2003) Controls of facies and sediment composition on the diagenetic pathway of shallow-water heterozoan carbonates: the Oligocene of the Maltese Islands. Int J Earth Sci 92:494–510CrossRefGoogle Scholar
  33. Li Z, Goldstein RH, Franseen EK (2017) Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain. Sediment Geol 348:1–18CrossRefGoogle Scholar
  34. Liu S, Jacques D (2017) Coupled reactive transport model study of pore size effects on solubility during cement-bicarbonate water interaction. Chem Geol 466:588–599CrossRefGoogle Scholar
  35. Longman MW (1980) Carbonate diagenetic textures from nearsurface diagenetic environments. AAPG Bull 64:461–487Google Scholar
  36. López-Quirós A, Barbier M, Martín JM, Puga-Bernabéu Á, Guichet X (2016) Diagenetic evolution of Tortonian temperate carbonates close to evaporites in the Granada Basin (SE Spain). Sediment Geol 335:180–196CrossRefGoogle Scholar
  37. Marshall JD, Ashton M (1980) Isotopic and trace element evidence for submarine lithification of hardgrounds in the Jurassic of eastern England. Sedimentology 27:271–289CrossRefGoogle Scholar
  38. Melim LA, Westphal H, Swart PK, Eberli GP, Munnecke A (2002) Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Mar Geol 185:27–53CrossRefGoogle Scholar
  39. Molenaar N, Venmans AAM (1993) Calcium carbonate cementation of sand: a method for producing artificially cemented samples for geotechnical testing and a comparison with natural cementation processes. Eng Geol 35:103–122CrossRefGoogle Scholar
  40. Molenaar N, Zijlstra JJP (1997) Differential early diagenetic low-Mg calcite cementation and rhythmic hardground development in Campanian-Maastrichtian chalk. Sediment Geol 109:261–281CrossRefGoogle Scholar
  41. Moore CH (2004) Carbonate reservoirs, porosity evolution and diagenesis in a sequence stratigraphic framework. Dev Sedimentol 55:444Google Scholar
  42. Müller G (1971) Gravitational cement: an indicator for the vadose zone of the subaerial diagenetic environment. In: Bricker OP (ed) Carbonate cements. Johns Hopkins University Press, Baltimore, pp 301–302Google Scholar
  43. Niedermayr A, Köhler S, Dietzel M (2013) Impacts of aqueous carbonate accumulation rate, magnesium and polyaspartic acid on calcium carbonate formation (6–40 °C). Chem Geol 340:105–120CrossRefGoogle Scholar
  44. Pederson CL, McNeill DF, Klaus JS, Swart PK (2015) Deposition and diagenesis of marine oncoids: implications for development of carbonate porosity. J Sediment Res 85:1323–1333CrossRefGoogle Scholar
  45. Pomar L, Morsilli M, Hallock P, Bádenas B (2012) Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth-Sci Reviews 111(1–2):56–81CrossRefGoogle Scholar
  46. Price GD, Baker SJ, Vandevelde J, Clémence ME (2016) High-resolution carbon cycle and seawater temperature evolution during the Jurassic (Sinemurian-Early Pliensbachian). Geochem Geophys Geosyst 17:3917–3928CrossRefGoogle Scholar
  47. Purser BH (1969) Syn-sedimentary marine lithification of Middle Jurassic limestones in the Paris Basin. Sedimentology 12:205–230CrossRefGoogle Scholar
  48. Putnis A (2015) Transient porosity resulting from fluid–mineral interaction and its consequences. Rev Mineral Geochem 80:1–23CrossRefGoogle Scholar
  49. Putnis A, Mauthe G (2001) The effect of pore size on cementation in porous rocks. Geofluids 1:37–41CrossRefGoogle Scholar
  50. Putnis A, Prieto M, Fernandez-Diaz L (1995) Fluid supersaturation and crystallization in porous media. Geol Mag 132:1–13CrossRefGoogle Scholar
  51. Richter DK, Götte T, Götze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineral Petrol 79:127–166CrossRefGoogle Scholar
  52. Ritter ME, Goldstein RH (2013) Diagenetic controls on porosity preservation in low stand oolitic and crinoidal carbonates, Mississippian, Kansas and Missouri, USA. In: Morad S, Ketzer M, de Ros LF (eds) Linking diagenesis to sequence stratigraphy. Wiley, New York, pp 379–406CrossRefGoogle Scholar
  53. Ronchi P, Ortenzi A, Borromeo O, Claps M, Zempolich WG (2010) Depositional setting and diagenetic processes and their impact on the reservoir quality in the late Visean-Bashkirian Kashagan carbonate platform (Pre-Caspian Basin, Kazakhstan). AAPG Bull 94:1313–1348CrossRefGoogle Scholar
  54. Sattler U, Immenhauser A, Hillgärtner H, Mateu E (2005) Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to Lower Aptian, Oman). Sedimentology 52:339–361CrossRefGoogle Scholar
  55. Schneidermann N, Harris PM (Eds) (1985) Carbonate Cements. SEPM Spec Publ, Tulsa (Oklahoma), USA 36, p 379Google Scholar
  56. Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. Am Assoc Petrol Geol, TulsaGoogle Scholar
  57. Smeester A, Muchez P, Swennen R, Keppens E (2013) Diagenesis at exposure surfaces in a transgressive systems tract in a third-order sequence (Lower Carboniferous, Belgium). In: Morad S, Ketzer JM, De Ros LF (eds) Linking Diagenesis to Sequence Stratigraphy. Wiley, West Sussex,  pp 133–150CrossRefGoogle Scholar
  58. Swart PK (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62:1233–1304CrossRefGoogle Scholar
  59. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, OxfordCrossRefGoogle Scholar
  60. Védrine S, Strasser A, Hug W (2007) Oncoid growth and distribution controlled by sea level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies 53:535–552CrossRefGoogle Scholar
  61. Vuillemin A, Ndiaye M, Martini R, Davaud E (2011) Cement stratigraphy: image probes of cathodoluminescent facies. Swiss J Geosci 104:55–66CrossRefGoogle Scholar
  62. Vincent B (2001) Sédimentologie et géochimie de la diagenèse des carbonates. Application au Malm de la bordure Est du Bassin de Paris. PhD Thesis, Univ Dijon, p 308Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Géodynamique des Bassins et Bilan SédimentaireUniversité Mohamed Ben Ahmed Oran 2OranAlgeria
  2. 2.GeoZentrumNordbayern, FachgruppePaläoumweltUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Laboratoire de Paléontologie Stratigraphie et PaléoenvironnementUniversité Mohamed Ben Ahmed Oran 2OranAlgeria

Personalised recommendations