, 65:13 | Cite as

The lower Upper Cretaceous of the south-eastern Münsterland Cretaceous Basin, Germany: facies, integrated stratigraphy and inter-basinal correlation

  • Markus WilmsenEmail author
  • Bettina Dölling
  • Martin Hiss
  • Birgit Niebuhr
Original Article


Integrated stratigraphic (litho-, bio-, event, chemo-, gamma ray, and sequence stratigraphy) and sedimentologic analyses of two new core sections greatly improved the understanding of facies development, sea-level changes and correlation of the lower Upper Cretaceous in the south-eastern Münsterland Cretaceous Basin, Germany. A large-scale second-order sea-level cycle is mirrored by the increasing importance of offshore facies and thicknesses of depositional sequences, reflecting the rise of accommodation during the Cenomanian to Early Turonian. In the Middle Turonian, this trend started to become reversed and the cycle ends with a major unconformity at the base of the Soest Grünsand Member in the mid-Upper Turonian. Condensation of the mid- and uppermost Turonian reflects the lack of accommodation during a phase of second-order lowstand, followed by a retrogradational trend during the Early Coniacian that marks the transgressive part of a new second-order cycle. Sedimentary unconformities in the Cenomanian–Turonian successions provide evidence for third-order sea-level changes superimposed onto the first early Late Cretaceous second-order cycle. They correspond to sequence boundaries SB Ce 1–5 and SB Tu 1–4 that have been identified in Central European basins and elsewhere, supporting their eustatic origin. The sea-level fall expressed by Upper Turonian unconformity SB Tu 4 is of major magnitude. The overlying Soest Grünsand Member is the only level of greensands in the Upper Turonian of the south-eastern Münsterland: the Alme Grünsand, introduced for another, allegedly uppermost Turonian greensand level, does not exist. Carbon stable isotopes from the mid-Upper Cenomanian to Lower Coniacian allowed calibrating the successions on intra- and interbasinal scales. A conspicuous mid-Middle Turonian positive isotope event has been newly named, i.e., the Niederntudorf Event. Sequence boundaries, marker beds (marl layers) and bentonites turned out to be isochronous within the chemostratigraphic framework. The identification of Turonian bentonites greatly improved the understanding of the stratigraphic relationships, especially in the Upper Turonian while natural gamma radiation logs turned out as a valuable method for intrabasinal correlation. In conclusion, the new sections provide a high-quality standard succession for the lower Upper Cretaceous in the south-eastern Münsterland Cretaceous Basin.


Cenomanian–Lower Coniacian Facies development Carbon stable isotopes Sequence stratigraphy Gamma ray logs High-resolution correlation 



We are grateful to two constructive anonymous reviews and the professional editorial handling by A. Munnecke (Erlangen). We would also like to thank Michaela Berensmeier and Nadine Janetschke (both Dresden) for support in logging and sampling of the Niederntudorf core and quarry sections, respectively. Ronald Winkler (Dresden) prepared most of the thin-sections. David Wray (Greenwich) and Tobias Püttmann (Bochum) are thanked for REE and calcareous nannofossil analyses of bentonite TF, respectively. The late Karl-Armin Tröger (Freiberg) identified the inoceramids from the Klieve quarry section. We also like to thank Ulrich Kaplan (Gütersloh) and Frank Wiese (Göttingen) for discussion of the “Soest Grünsand problem”.


  1. Baccelle L, Bosellini A (1965) Diagrammi per la stima visiva: della composizione percentuale nelle rocce sedimentarie, vol 1. Univ. degli studi, FerraraGoogle Scholar
  2. Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. Generation, accumulation and production of Europe’s hydrocarbons. Spec Publ Europ Assoc Petrol Geosci 1:149–159Google Scholar
  3. Bärtling R (1920) Transgressionen, Regressionen und Faziesverteilung in der Mittleren und Oberen Kreide des Beckens von Münster. Z Dt Geol Ges 72:161–217Google Scholar
  4. Berensmeier M, Dölling B, Linnert C, Wilmsen M (2018a) Stratigraphical dissection of proximal shallow-water deposits: integrated analysis of the Cenomanian–Coniacian in the southwestern Münsterland Cretaceous Basin (northwest Germany). Zeitschrift der deutschen Gesellschaft für Geowissenschaften; Stuttgart. CrossRefGoogle Scholar
  5. Berensmeier M, Dölling B, Frijia G, Wilmsen M (2018b) Facies analysis of proximal upper Cretaceous deposits in the southwestern Münsterland Cretaceous Basin (northwest Germany). Cretac Res 87:241–260CrossRefGoogle Scholar
  6. Boulila S, Galbrun B, Miller KG, Pekar SF, Browning JV, Laskar J, Wright JD (2011) On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth Sci Rev 109:94–112CrossRefGoogle Scholar
  7. Burnett JA (1998) Upper Cretaceous. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Chapman Hall, London, pp 132–199CrossRefGoogle Scholar
  8. Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, AmsterdamGoogle Scholar
  9. Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44:173–245CrossRefGoogle Scholar
  10. Christie-Blick N (1991) Onlap, offlap, and the origin of unconformity-bounded depositional sequences. Mar Geol 97:35–56CrossRefGoogle Scholar
  11. Dölling B, Dölling M, Hiss M (2014) The Upper Cretaceous sedimentary rocks of the southern Münsterland (northwest Germany) revisited–new correlations of borehole lithostratigraphical, biostratigraphical and natural gamma radiation (GR) log data. Z Dt Ges Geowiss 165:521–545Google Scholar
  12. Dölling B, Dölling M, Hiss M, Berensmeier M, Püttmann T (2018) Upper Cretaceous shallow-marine deposits of the southwestern Münsterland (northwest Germany) influenced by synsedimentary tectonics. Cretac Res 87:261–276CrossRefGoogle Scholar
  13. Dorn P, Bräutigam F (1959) Hinweise auf Oberkreidevulkanismus in NW-Deutschland. Abh Braunschweiger Wiss Ges 11:1–4Google Scholar
  14. Ernst G, Schmid F, Seibertz E (1983) Event-Stratigraphie im Cenoman und Turon von NW-Deutschland. Zitteliana 10:531–554Google Scholar
  15. Floyd PA, Winchester JA (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chem Geol 21:291–306CrossRefGoogle Scholar
  16. Funk H (1971) Zur Stratigraphie und Lithologie des Helvetischen Kieselkalkes und der Altmannschichten in der Santis- Churfirsten-Gruppe (Nordostschweiz). Eclogae Geol Helv 64:345–433Google Scholar
  17. Gale AS (1990) A Milankovitch scale for Cenomanian time. Terra Nova 1:420–425CrossRefGoogle Scholar
  18. Gale AS (1995) Cyclostratigraphy and correlation of the Cenomanian stage in Western Europe. In: House MR, Gale AS (eds) Orbital forcing timescales and cyclostratigraphy, vol 85. Geological Society London Special Publications, pp 177–197Google Scholar
  19. Gale AS (1996) Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: Hesselbo SP, Parkinson DN (eds) Sequence stratigraphy in British Geology. vol 103. Geological Society London Special Publications, pp 177–195Google Scholar
  20. Gale AS, Jenkyns HC, Kennedy WJ, Corfield RM (1993) Chemostratigraphy versus biostratigraphy: data from around the Cenomanian–Turonian boundary. J Geol Soc London 150:29–32CrossRefGoogle Scholar
  21. Gale AS, Hardenbol J, Hathway B, Kennedy WJ, Young JR, Phansalkar V (2002) Global correlation of Cenomanian (upper Cretaceous) sequences: evidence for Milankovitch control of sea level. Geology 30:291–294CrossRefGoogle Scholar
  22. Gale AS, Voigt S, Sageman BB, Kennedy WJ (2008) Eustatic sea-level record for the Cenomanian (Late Cretaceous)—extension to the Western Interior Basin, USA. Geology 36:859–862CrossRefGoogle Scholar
  23. Geologisches Landesamt Nordrhein-Westfalen (1995) Geologie im Münsterland. GD NRW, KrefeldGoogle Scholar
  24. Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 113:44–58CrossRefGoogle Scholar
  25. Hilbrecht H, Dahmer DD (1991) Inoceramen aus den Schwarzschiefern des basalen Unterturon (Oberkreide) von Helgoland und Misburg. Geol Jb A 120:245–269Google Scholar
  26. Hiss M (1982) Neue Ergebnisse zur Paläogeographie des Cenomans in Westfalen. N Jb Geol Paläont Monatsh 1982:533–546Google Scholar
  27. Hiss M, Mutterlose J, Niebuhr B, Schwerd K (2005) Die Kreide in der Stratigraphischen Tabelle von Deutschland 2002. Newsl Stratigr 41:287–306CrossRefGoogle Scholar
  28. Janetschke N, Niebuhr B, Wilmsen M (2015) Inter-regional sequence-stratigraphical synthesis of the Plänerkalk, Elbtal and Danubian Cretaceous groups (Germany): Cenomanian–Turonian correlations around the Mid-European Island. Cretac Res 56:530–549CrossRefGoogle Scholar
  29. Jarvis I, Gale AS, Jenkyns HC, Pearce MA (2006) Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6–70.6 Ma). Geol Mag 143:561–608CrossRefGoogle Scholar
  30. Jarvis I, Trabucho-Alexandre J, Gröcke D, Uličný D, Laurin J (2015) Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous). Depos Rec 1:53–90CrossRefGoogle Scholar
  31. Jeffries RPS (1963) The stratigraphy of the Actinocamax plenus subzone (Turonian) in the Anglo-Paris Basin. Proc Geol Assoc 74:1–33CrossRefGoogle Scholar
  32. Kaplan U (1994) Zur Stratigraphie und Korrelation des Soester Grünsandes, Ober-Turon, Westfalen. Ber Naturwiss Verein Bielefeld Umgeb 35:59–78Google Scholar
  33. Kaplan U (2015) Oerlinghausen- und Salder-Formation (Mittel- und Oberturonium, Oberkreide) der Paderborner Hochfläche und des Haarstrangs zwischen Borchen und Anröchte (Südöstliches Münsterländer Kreidebecken). Geol Paläont Westfalen 87:5–73Google Scholar
  34. Kennedy WJ (1984) Ammonite faunas and the “standard zones” of the Cenomanian to Maastrichtian Stages in their type areas, with some proposals for the definition of the stage boundaries by ammonites. Bull geol Soc Den 33:147–161Google Scholar
  35. Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa–Iberia–Europe convergence, not Alpine collision. Geology 36:839–842CrossRefGoogle Scholar
  36. Laurin J, Čech S, Uličný D, Štaffen Z, Svobodová M (2014) Astrochronology of the Late Turonian: implications for the behavior of the carbon cycle at the demise of peak greenhouse. Earth Planet Sci Lett 394:254–269CrossRefGoogle Scholar
  37. Lorch S (1985) Korrektur von Bohrlocheinflüssen bei der Messung der natürlichen Gammastrahlung in einer Bohrung. Geol Jb E 32:3–36Google Scholar
  38. MacLeod KG, Hoppe KA (1992) Evidence that inoceramid bivalves were benthic and harboured chemosynthetic symbionts. Geology 20:117–120CrossRefGoogle Scholar
  39. Mitchell SF, Paul CRC, Gale AS (1996) Carbon isotopes and sequence stratigraphy. In: Howell JA, Aitken JF (eds) High resolution sequence stratigraphy: Innovations and applications, vol 104. Geological Society London Special Publications, pp 11–24Google Scholar
  40. Niebuhr B, Hiss M, Kaplan U, Tröger KA, Voigt S, Voigt T, Wiese F, Wilmsen M (2007) Lithostratigraphie der norddeutschen Oberkreide. SDGG 55:1–136Google Scholar
  41. Niebuhr B, Wilmsen M, Chellouche P, Richardt N, Pürner T (2011) Stratigraphy and facies of the Turonian (Upper Cretaceous) Roding Formation at the southwestern margin of the Bohemian Massif (southern Germany, Bavaria). Z Dt Ges Geowiss 162:295–316Google Scholar
  42. Niebuhr B, Wilmsen M, Janetschke N (2014) Cenomanian–Turonian sequence stratigraphy and facies development of the Danubian Cretaceous Group (Bavaria, southern Germany). Z Dt Ges Geowiss 165:621–640Google Scholar
  43. Ogg JG, Hinnov LA (2012) Cretaceous. In: Gradstein FM, Ogg JG, Schmitz M, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 793–853CrossRefGoogle Scholar
  44. Paul CRC, Lamolda MA, Mitchell SF, Vaziri MR, Gorostidi A, Marshall JD (1999) The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Palaeogeogr Palaeoclim Palaeoecol 150:83–121CrossRefGoogle Scholar
  45. Posamentier HW, Jervey MT, Vail PR (1988) Eustatic controls on clastic deposition I—conceptual framework. Soc Econ Palaeont Mineral Spec Publ 42:109–124Google Scholar
  46. Richardt N, Wilmsen M (2012) Lower Upper Cretaceous standard section of the southern Münsterland (NW-Germany): carbon stable isotopes and sequence stratigraphy. Newsl Stratigr 45:1–24CrossRefGoogle Scholar
  47. Richardt N, Wilmsen M, Niebuhr B (2013) Late Cenomanian-Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany). Facies 59:803–827CrossRefGoogle Scholar
  48. Robaszynski F, Juignet P, Gale AS, Amédro F, Hardenbol J (1998) Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In: Jaquin T, de Graciansky P, Hardenbol J (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins, vol 60. Society of Economic Paleontologists and Mineralogists Special Publication, Tulsa, pp 363–385CrossRefGoogle Scholar
  49. Roemer FA (1841) Die Versteinerungen des norddeutschen Kreidegebirges. Hahn, HannoverGoogle Scholar
  50. Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnb 55:179–184Google Scholar
  51. Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (1987) The Cenomanian–Turonian Oceanic Anoxic Event. Stratigraphy and distribution of organic carbon-rich beds and the marine 13C-excursion. In: Brooks J, Fleet AJ (eds) Marine Petroleum Source Rocks, vol 26. Geological Society London Special Publications, pp 371–399Google Scholar
  52. Seibertz E (1977) Litho-, Bio-, Ökostratigraphie, Sedimentologie und Tektonik im Soester Grünsand. Geol Jb A 40:61–113Google Scholar
  53. Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate sequence stratigraphy. Geoarabia Spec Publ 2:1–371Google Scholar
  54. Simmons MD (2012) Sequence stratigraphy and sea-level change. In: Gradstein FM, Ogg JG, Schmitz M, Ogg GM (eds) The geologic time scale 2012, vol 1. Elsevier, Amsterdam, pp 239–267CrossRefGoogle Scholar
  55. Stoll HM, Schrag DP (2000) High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: glacial episodes in a greenhouse planet? GSA Bull 112:308–319CrossRefGoogle Scholar
  56. Uličný D, Jarvis I, Gröcke DR, Čech S, Laurin J, Olde K, Trabucho-Alexandre J, Švábenická L, Pendentchouk N (2014) A high-resolution carbon-isotope record of the Turonian stage correlated to a siliciclastic basin fill: implications for mid-Cretaceous sea-level change. Palaeogeogr Palaeoclim Palaeoecol 405:42–58CrossRefGoogle Scholar
  57. Vejbæk OV, Andersen C, Dusa M, Herngreen W, Krabbe H, Leszczynski K, Lott GK, Mutterlose J, van der Molen AS (2010) Cretaceous. In: Doornenbal H, Stevenson A (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publ, Houten, pp 195–209Google Scholar
  58. Voigt E (1962) Frühdiagenetische Deformation der turonen Plänerkalke bei Halle/Westf. als Folge einer Großgleitung unter besonderer Berücksichtigung des Phacoid-Problems. Mitt Geol Staatsinst Hamburg 31:146–275Google Scholar
  59. Voigt S, Hilbrecht H (1997) Late Cretaceous carbon isotope stratigraphy in Europe: correlation and relations with sea level and sediment stability. Palaeogeogr Palaeoclim Palaeoecol 134:39–59CrossRefGoogle Scholar
  60. Voigt T, Wiese F, von Eynatten H, Franzke HJ, Gaupp R (2006) Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Z Dt Ges Geowiss 157:203–243Google Scholar
  61. Voigt S, Aurag A, Leis F, Kaplan U (2007) Late Cenomanian to Middle Turonian high-resolution carbon isotope stratigraphy: new data from the Münsterland Cretaceous Basin, Germany. Earth Planet Sci Lett 252:196–210CrossRefGoogle Scholar
  62. Voigt S, Wagreich M, Surlyk S, Walaszczyk I, Uličný D, Čech S, Voigt T, Wiese F, Wilmsen M, Niebuhr B, Reich M, Funk H, Michalík J, Jagt JWM, Felder PJ, Schulp AS (2008a) Cretaceous. In: McCann T (ed) The Geology of Central Europe, vol 2. Mesozoic and Cenozoic. Geol Soc, London, pp 923–997Google Scholar
  63. Voigt S, Erbacher J, Mutterlose J, Weiss W, Westerhold T, Wiese F, Wilmsen M, Wonik T (2008b) The Cenomanian–Turonian of the Wunstorf section (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2. Newsl Stratigr 43:65–89CrossRefGoogle Scholar
  64. von Strombeck A (1859) Beitrag zur Kenntnis des Pläners über der Westphälischen Steinkohlenformation. Z Dt Geol Ges 11:27–77Google Scholar
  65. Wendler JE, Meyers SR, Wendler I, Kuss J (2014) A million-year-scale control on Late Cretaceous sea-level. Newsl Stratigr 47:1–19CrossRefGoogle Scholar
  66. Wick W (1947) Aufbereitungsmethoden in der Mikropaläontologie. Jber Naturhist Ges Hannover 98:35–41Google Scholar
  67. Wiese F (1999) Stable isotope data (δ13C, δ18O) from the Middle and Upper Turonian (Upper Cretaceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (Söhlde & Salzgitter-Salder). Newsl Stratigr 37:37–62CrossRefGoogle Scholar
  68. Wiese F (2009) The Söhlde Formation (Cenomanian, Turonian) of NW Germany: shallow marine pelagic red beds. SEPM Spec Publ 91:53–170Google Scholar
  69. Wiese F, Kaplan U (2001) The potential of the Lengerich section (Münster Basin, northern Germany) as a possible candidate Global boundary Stratotype Section and Point (GSSP) for the Middle/Upper Turonian boundary. Cretac Res 22:549–563CrossRefGoogle Scholar
  70. Wiese F, Wilmsen M (1999) Sequence stratigraphy in the Cenomanian to Campanian of the North Cantabrian Basin (northern Spain). N Jb Geol Paläont Abh 212:131–173CrossRefGoogle Scholar
  71. Wiese F, Wood CJ, Wray DS (2004a) New advances in the stratigraphy and geochemistry of the German Turonian (Late Cretaceous) tephrostratigraphic framework. Acta Geol Polon 54:657–671Google Scholar
  72. Wiese F, Čech S, Ekrt B, Kost’ak M, Mazuch M, Voigt S (2004b) The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Ùpholavy working quarry: integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretac Res 25:329–352CrossRefGoogle Scholar
  73. Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretac Res 24:525–568CrossRefGoogle Scholar
  74. Wilmsen M (2007) Integrated stratigraphy of the upper Lower–lower Middle Cenomanian of northern Germany and southern England. Acta Geol Polon 57:263–279Google Scholar
  75. Wilmsen M (2008) An Early Cenomanian (Late Cretaceous) maximum flooding bioevent in NW Europe: correlation, sedimentology and biofacies. Palaeogeogr Palaeoclimat Palaeoecol 258:317–333CrossRefGoogle Scholar
  76. Wilmsen M, Nagm E (2013) Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert. Egypt Newsl Stratigr 46:23–46CrossRefGoogle Scholar
  77. Wilmsen M, Voigt T (2006) The Middle-Upper Cenomanian of Zilly (Sachsen-Anhalt, northern Germany) with remarks on the Pycnodonte Event. Acta Geol Polon 56:17–31Google Scholar
  78. Wilmsen M, Niebuhr B, Hiss M (2005) The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies 51:242–263CrossRefGoogle Scholar
  79. Wilmsen M, Niebuhr B, Wood CJ, Zawischa D (2007) Fauna and palaeoecology of the Middle Cenomanian Praeactinocamax primus Event at the type locality, Wunstorf quarry, northern Germany. Cretac Res 28:428–460CrossRefGoogle Scholar
  80. Wilmsen M, Niebuhr B, Chellouche P, Pürner T, Kling M (2010) Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies 56:483–507CrossRefGoogle Scholar
  81. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  82. Wray DS (1995) Origin of clay-rich beds in Turonian chalks from Lower Saxony, Germany—a rare-earth element study. Chem Geol 119:161–178CrossRefGoogle Scholar
  83. Wray DS (1999) Identification and long-range correlation of bentonites in Turonian–Coniacian (Upper Cretaceous) chalks of northwest Europe. Geol Mag 136:361–371CrossRefGoogle Scholar
  84. Wray DS, Wood CJ (1998) Distinction between detrital and volcanogenic clay-rich beds in Turonian–Coniacian chalks of eastern England. Proc Yorkshire Geol Soc 52:95–105CrossRefGoogle Scholar
  85. Wray DS, Kaplan U, Wood CJ (1995) Tuff-Vorkommen und ihre Bio- und Eventstratigraphie im Turon des Teutoburger Waldes, der Egge und des Haarstranges. Geol Paläont Westfalen 31:1–155Google Scholar
  86. Wray DS, Wood CJ, Ernst G, Kaplan U (1996) Geochemical subdivision and correlation of clay-rich beds in Turonian sediments of northern Germany. Terra Nova 8:603–610CrossRefGoogle Scholar
  87. Wulff L, Kaplan U, Mutterlose J (2017) Zur spätkretazischen Hebungsgeschichte des Raumes Halle (Westfalen): die Biostratigraphie der Rutschmassen des Hesseltals. Geol Paläont Westfalen 89:5–19Google Scholar
  88. Ziegler PA (1990) Geological atlas of Western and Central Europe. 2nd edn. Shell Intern Petrol, MaatschappijGoogle Scholar
  89. Ziegler PA, Cloetingh S, van Wees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Markus Wilmsen
    • 1
    Email author
  • Bettina Dölling
    • 2
  • Martin Hiss
    • 2
  • Birgit Niebuhr
    • 1
  1. 1.Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und GeologieDresdenGermany
  2. 2.Geologischer Dienst Nordrhein-WestfalenKrefeldGermany

Personalised recommendations