Advertisement

Facies

, 65:6 | Cite as

Paleoenvironment and taphonomy of lower Miocene bivalve and macroid assemblages: the Lagos Biocalcarenite (Lagos-Portimão Formation, southern Portugal)

  • Carlos Marques da Silva
  • Mário Cachão
  • Ana Cristina Rebelo
  • Markes E. Johnson
  • B. Gudveig Baarli
  • Ana Santos
  • Eduardo J. Mayoral
Original Article
  • 46 Downloads

Abstract

Between Lagos and Albufeira, the Algarve coast of southern Portugal is marked by outcrops of the lower Miocene Lagos-Portimão Formation (LPF) consisting of yellow sandstone and coarse skeletal-rhodolithic limestone. This contribution focuses on the rhodoliths, their paleoecology, taphonomy, and biological composition, in the Lagos Biocalcarenite, the lower member of the LPF. Special attention is paid to the unusual occurrence of numerous rhodoliths nucleated around articulated bivalve shells, as well as to the nature of their biological interactions and taphonomic features. The calcareous algae of the rhodoliths (Phymatolithon calcareum and Spongites sp.) are commonly interlayered with thin bands of bryozoans and serpulids. Thick beds of non-nucleated spheroidal rhodoliths first appear at approximately 5–6 m above the base of the LPF as a result of a storm event that shifted rhodoliths in a shoreward direction. The bioeroded surface at the top of the Cretaceous Porto de Mós Formation, at the base of the overlying LPF succession, is a wave-cut platform representing the Miocene transgressive surface.

Keywords

Algarve Lagos-Portimão Formation Miocene Transgressive surface Bioerosion Rhodoliths 

Notes

Acknowledgements

This study was funded under Grant CGL2010-15372-BTE from the Spanish Ministry of Science and Innovation to project leader Eduardo Mayoral (University of Huelva). Ana Cristina Rebelo thanks C. Wimmer-Pfeil at Staatliches Museum für Naturkunde Stuttgart in Germany for help with preparation of thin-sections for the study of the Canavial rhodoliths and Michael Rasser for advice on the taxonomy of coralline red algae. The rhodolith material in this contribution was presented by Rebelo in a session on “Atlantic rocky and sandy coastlines” during the conference convened by the Regional Committee on Neogene Atlantic Stratigraphy, held 10–13 July 2017 at the University of the Azores in Ponta Delgada, São Miguel Island, the Azores. Eduardo Mayoral and Ana Santos also acknowledge additional support by Junta de Andalucía (Spanish government) to the Research Group RNM 276 and by the project CGL2015-66835-P (Secretaría de Estado de I + D + i, Spain). Publication supported by project FCT UID/GEO/50019/2019 and Instituto Dom Luiz of geosciences. Last, but not least, the authors would like to thank the reviewer Laura Tomassetti (Sapienza University of Rome) and an anonymous reviewer, as well as the editors of Facies, for their helpful and constructive comments and suggestions that greatly contributed to improving the final version of this work.

References

  1. Adey WH, McKibbin D (1970) Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnion coralloides Crouan in the Ria de Vigo. Bot Mar 13:100–106CrossRefGoogle Scholar
  2. Adey WH, MacIntyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geol Soc Am Bull 84(3):883–904CrossRefGoogle Scholar
  3. Aguirre J, Braga JC, Bassi D (2017) Rhodoliths and rhodolith beds in the rock record In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds), Rhodolith/Maërl Beds: A Global Perspective, Coastal Research Library, Springer Verlag 15: 105–138Google Scholar
  4. Alejandrino A, Puslednik L, Serb JM (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evol Biol 11:164CrossRefGoogle Scholar
  5. Allmon WD (1988) Ecology of Recent Turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios 3:284–295CrossRefGoogle Scholar
  6. Antunes MT, Bizon G, Nascimento A, Pais J (1981) Nouvelles données sur la datation des dépôts miocènes de l’Algarve (Portugal) et l’evolution géologique regionale. Ciências da Terra (UNL) 6:153–168Google Scholar
  7. Antunes MT, Pais J (1993) The Neogene of Portugal. Ciências da Terra (UNL) 8:55–64Google Scholar
  8. Areschoug JE (1852) Ordo XII. Corallinaceae. In: Agardh JG (ed) Species, Genera, et Ordines Algarum, Vol. 2, Part 2, C.W.K. Gleerup, Lund, pp 506–576Google Scholar
  9. Ávila PS, Ramalho R, Habermanng JM, Quartau R, Kroh A, Berning B, Johnson M, Kirby MX, Zanon V, Titschacko J, Goss A, Rebelo AC, Melo C, Madeira P, Cordeiro R, Meireles R, Bagaço L, Hipólito A, Uchman A, Silva CM da, Cachão M, Madeira J (2015) Palaeoecology, taphonomy, and preservation of a lower Pliocene Shell bed (coquina) from a volcanic oceanic island (Santa Maria Island, Azores). Palaeogeogr Palaeoclimatol Palaeoecol 430:57–73CrossRefGoogle Scholar
  10. Baarli BG, Santos A, Silva CM da, Ledesma-Vázquez J, Mayoral E, Cachão M, Johnson ME (2012) Diverse macroids and rhodoliths from the Upper Pleistocene of Baja California Sur, Mexico. J Coastal Res 28:296–305CrossRefGoogle Scholar
  11. Baeta M, Galimany E, Ramón M (2016) Growth and reproductive biology of the sea star Astropecten aranciacus (Echinodermata, Asteroidea) on the continental shelf of the Catalan Sea (northwestern Mediterranean). Helgol Mar Res 70:1CrossRefGoogle Scholar
  12. Bakun A (1978) Guinea current upwelling. Nature 271:147–150CrossRefGoogle Scholar
  13. Batters EAL (1892) Additional notes on the marine algae of the Clyde sea area. Journal of Botany, British and Foreign 30:170–177Google Scholar
  14. Bizzozero G (1885) Flora Venetta Crittogamica. Parte 2. Seminario, PadovaGoogle Scholar
  15. Bosellini A, Ginsburg RN (1971) Form and internal structure of recent algal nodules (rhodolites) from Bermuda. J Geol 79:669–682CrossRefGoogle Scholar
  16. Bosence DWJ (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19:71–88Google Scholar
  17. Bosence DWJ (1983a) Coralline algal reef frameworks. Journal of the Geological Society London 140:365–376CrossRefGoogle Scholar
  18. Bosence DWJ (1983b) The occurrence and ecology of Recent rhodoliths––a review. In: Peryt TM (ed) Coated Grains. Springer, Berlin, pp 217–224CrossRefGoogle Scholar
  19. Boucart J, Zbyszewski G (1940) La faune de Cacela en Algarve (Portugal). Comunicações dos Serviços Geológicos de Portugal 31:3–60Google Scholar
  20. Brachert TC, Forst MH, Pais JJ, Legoinha P, Reijmer JJC (2003) Lowstand carbonates, highstand sandstones? Sed Geol 155:1–12CrossRefGoogle Scholar
  21. Braga JC, Bosence DWJ, Steneck RS (1993) New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535–547Google Scholar
  22. Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in Southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:27–41CrossRefGoogle Scholar
  23. Brandano M, Piller WE (2010) Coralline algae, oysters and echinoids: a liaison in rhodolith formation from the Burdigalian of the Latium-Abruzzi Platform (Italy). Int Assoc Sedimentol Spec Publ 42:149–163Google Scholar
  24. Bromley RG, Hanken N-M, Asgaard U (1990) Shallow marine bioerosion: preliminary results of an experimental study. Bull Geol Soc Den 38:85–99Google Scholar
  25. Bromley RG, Asgaard U (1993) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2:93–116CrossRefGoogle Scholar
  26. Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The Palaeobiology of Tracefossils. Wiley, ChichesterGoogle Scholar
  27. Cachão M, Silva CM da (1992) Neogene paleogeographic evolution of Algarve Basin (Southern Portugal): a two-step model. Prelim Data Gaia 4:39–42Google Scholar
  28. Cachão M (1995) Utilização de nanofósseis calcários em biostratigrafia, paleoceanografia e paleoecologia. Aplicações ao Neogénico do Algarve (Portugal) e do Mediterrâneo Ocidental (ODP 653) e à problemática de Coccolithus pelagicus. PhD thesis, University of LisbonGoogle Scholar
  29. Cachão M, Boski T, Moura D, Dias R, Silva CM da, Santos A, Pimentel N, Cabral J (1998) Proposta de articulação das unidades sedimentares neogénicas e quaternárias do Algarve. Comunicações do Instituto Geológico e Mineiro 84(1):A169–A172Google Scholar
  30. Cachão M, Silva CM da (2000) The three main depositional cycles of the Neogene of Portugal. Ciências da Terra (UNL) 14:303–312Google Scholar
  31. Cachão M, Silva CM da, Santos AG, Domènech R, Martinell J, Mayoral E (2009) The bioeroded megasurface of Oura (Algarve, S Portugal): implications for the Neogene stratigraphy and tectonic evolution of SW Iberia. Facies 55:213–225CrossRefGoogle Scholar
  32. Checconi A, Bassi D, Carannante G, Monaco P (2010) Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sed Geol 225:50–56CrossRefGoogle Scholar
  33. Chukwuone NA, Ukwe CN, Onugu A, Ibe CA (2009) Valuing the Guinea current large marine ecosystem: estimates of direct output impact of relevant marine activities. Ocean Coast Manag 52(3–4):189–196CrossRefGoogle Scholar
  34. de Gibert JM, Martinell J, Domènech R (1998) Entobia ichnofacies in fossil rockyshores, Lower Pliocene, Northwestern Mediterranean. Palaios 13:476–487CrossRefGoogle Scholar
  35. de Gibert JM, Domènech R, Martinell J (2007) Bioerosion in shell beds from the Pliocene Roussillon Basin, France: implications for the (macro)bioerosion ichnofacies model. Acta Palaeontologia Polonica 52(4):783–798Google Scholar
  36. de Lamarck JBM (1816) Histoire naturelle des animaux sans vertèbres. Tome troisième, Deterville/VerdièreGoogle Scholar
  37. Forst MH (2003) Zur Karbonatsedimentologie, Biofazies und sequenzstratigraphischen Architektur eines fossilen Hochenergie-Schelfs aus dem Neogen der Algarve (Miozän, Südportugal). PhD thesis, Johannes Gutenberg-Universität in MainzGoogle Scholar
  38. Foslie M (1898) Systematical survey of the Lithothamnia. Det Kongelige Norske Videnskabers Skrifer 1898(2):1–7Google Scholar
  39. Foslie M (1905) Remarks on northern Lithothamnia. Det Kongelige Norske Videnskabers Skrifer 3:1–138Google Scholar
  40. Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207CrossRefGoogle Scholar
  41. Ghibaudo G, Grandesso P, Massari F, Uchman A (1996) Use of trace fossils in delineating sequence stratigraphic surfaces (Tertiary Venetian Basin, northeastern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 120:261–279CrossRefGoogle Scholar
  42. Gray JE (1864) Handbook of British Water-Weeds or Algae. R. Hardwicke, LondonGoogle Scholar
  43. Gutowski J (1984) Sedimentary environment and synecology of macrobenthic assemblages of the marly sands and red-algal limestones in the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologia Polonica 34(3–4):323–339Google Scholar
  44. Harvey WH (1849) Nereis Australis. II. Reeve, London, pp 65–124Google Scholar
  45. Hottinger L (1983) Neritic macroid genesis, an ecological approach. In: Peryt TM (ed) Coated Grains. Springer-Verlag, Berlin, pp 38–55CrossRefGoogle Scholar
  46. Iryu Y, Bassi D, Woelkerling WJ (2012) Typification and reassessment of seventeen species of coralline red algae (Corallinales and Sporolithales, Rhodophyta) described by W. Ishijima during 1954-1978. J Syst Paleontol 10:171–209CrossRefGoogle Scholar
  47. Irvine LM, Chamberlain M (1994) Seaweeds of the British Isles. Vol. 1 Rhodophyta, Part 2B Corallinales, Hildenbrandiales. London, HMSOGoogle Scholar
  48. Johnson ME, Baarli BG, Silva CM da, Cachão M, Ramalho RS, Santos A, Mayoral EJ (2016a) Recent rhodolith deposits stranded on the windward shores of Maio (Cape Verde Islands): historical resource for the local economy. J Coast Res 32:735–743CrossRefGoogle Scholar
  49. Johnson ME, Ledesma-Vázquez J, Ramalho R, Silva CM da, Rebelo AC, Santos A, Baarli BG, Mayoral E, Cachão M (2016b) Taphonomic range and sedimentary dynamics of modern and fossil rhodolith beds: Macaronesian Realm (North Atlantic Ocean). In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) Rhodolith/Maërl beds: a global perspective, coastal research library, vol 15. Springer, Berlin, pp 221–261CrossRefGoogle Scholar
  50. Kelly P, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27(4):793–807Google Scholar
  51. King PP (1832) Description of the Cirrhipeda, Conchifera and Mollusca, in a collection formed by the officers of H.M.S. Adventure and Beagle employed between the years 1826 and 1830 in surveying the southern coasts of South America, including the Straits of Magalhaens [sic] and the coast of Tierra del Fuego. Zool J 5:332–349Google Scholar
  52. Kotizan CB, Simões MG (2006) Taphonomy of recent freshwater molluscan death assemblages, Touro Passo Stream. Southern Brazil. Revista Brasileira de Paleontologia 9(2):243–260CrossRefGoogle Scholar
  53. Kützing FT (1841) Über die ‘Polipiers calcifères des Lamouroux’. F. Thiele, NordhausenGoogle Scholar
  54. Lamptey E (2015) Eco-functional benthic biodiversity assemblage patterns in the Guinea Current Large Marine Ecosystem. PhD thesis, University of GhanaGoogle Scholar
  55. Lamouroux JVF (1812) Sur la classification des Polypiers coralligénes non entiérement pierreux. Nouveau Bulletin des Sciences par la Société Philomathique de Paris 3:181–188Google Scholar
  56. Linnaeus C (1767) Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1., Regnum Animale. 1 and 2. Holmiae, Laurentii Salvii. Holmiae [Stockholm], Laurentii Salvii, pp. 1–532 [1766] (pp. 533–1327 [1767])Google Scholar
  57. Littler MM, Littler DS, Hanisak MD (1991) Deep-water rhodolith, productivity, and growth history at sites of formation and subsequent degradation. J Exp Mar Biol Ecol 150:163–182CrossRefGoogle Scholar
  58. Marrack EC (1999) The Relationship Between Water Motion and Living Rhodolith Beds in the Southwestern Gulf of California, Mexico. Palaios 14:159–171CrossRefGoogle Scholar
  59. Moretzsohn F (2014) Cypraeidae: how Well-Inventoried is the Best-Known Seashell Family? American Malacological Bull 32(2):278–289CrossRefGoogle Scholar
  60. Müller OF (1776) Zoologiae Danicae Prodromus seu Animalium Daniae et Norvegiae indigenarum characteres, nomina, et synonyma imprimis popularium. Hafniae, Typiis HallageriisGoogle Scholar
  61. Nebelsick J, Schmid B, Stachowitsch M (1997) The encrustation of fossil and recent sea-urchin tests: ecological and taphonomic significance. Lethaia 30:271–284CrossRefGoogle Scholar
  62. Pais J, Legoinha P, Elderfield H, Sousa L, Estevens M (2000) The Neogene of Algarve (Portugal). Ciências da Terra (UNL) 14:277–288Google Scholar
  63. Pais J, Cunha P, Pereira D, Legoinha P, Dias R, Moura D, Brum A, Kullberg JC, González-Delgado JA (2012) The Paleogene and Neogene of Western Iberia (Portugal). A Cenozoic Record in the European Atlantic Domain. Springer Briefs in Earth Sciences. Springer, BerlinCrossRefGoogle Scholar
  64. Pallas PS (1766) Elenchus Zoophytorum. P. van Cleef, HagueGoogle Scholar
  65. Penrose D, Woelkerling WJ (1992) A reappraisal of Hydrolithon and its relationship to Spongites (Corallinaceae, Rhodophyta). Phycologia 31:81–88CrossRefGoogle Scholar
  66. Philippi RA (1844) Descriptiones testaceorum quorundam novorum, maxime chinensium. Zeitschrift für Malakozoologie 1:161–167Google Scholar
  67. Pisera A, Studencki W (1989) Middle Miocene rhodoliths from the Korytnica Basin (Southern Poland): environmental significance and palaeontology. Acta Palaeontol Pol 34(4):179–209Google Scholar
  68. Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34:151–166CrossRefGoogle Scholar
  69. Rasser MP, Piller WE (1999) Application of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. J Micropalaeontol 18:67–80CrossRefGoogle Scholar
  70. Reid RP, MacIntyre IG (1988) Foraminiferal-algal nodules from the Eastern Caribbean: growth history and implications on the value of nodules as palaeoenvironmental indicators. Palaios 3:424–435CrossRefGoogle Scholar
  71. Rey J (1982) Le Crétacé dans la région de Faro (Algarve, Portugal). Comunicações dos Serviços Geológicos de Portugal 68(2):225–236Google Scholar
  72. Rey J, Dinis J, Callapez P, Cunha P (2006) Da rotura continental à margem passiva. Composição e evolução do Cretácico de Portugal, Cadernos de Geologia de Portugal. Instituto Geológico e Mineiro, LisboaGoogle Scholar
  73. Rivera MG, Riosmena-Rodríguez R, Foster MS (2004) Age and growth of Lithothamnion muelleri (Corallinales, Rhodophyta) in the southwestern Gulf of California, Mexico. Ciencias Marinas 30(1B):235–249CrossRefGoogle Scholar
  74. Rösler A, Perfectti F, Peña V, Braga JC (2016) Phylogenetic relationships of Corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines. J Phycol 52(3):412–431CrossRefGoogle Scholar
  75. Santos A, Mayoral E, Silva CM da, Cachão M, Domènech R, Martinell J (2008) Trace fossil assemblages on Miocene rocky shores of southern Iberia. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 431–450CrossRefGoogle Scholar
  76. Santos A, Mayoral E, Silva CM da, Cachão M, Kullberg JC (2010) Trypanites Ichnofacies: Palaeoenvironmental and tectonic implications. A case study from the Miocene disconformity at Foz da Fonte (Lower Tagus Basin, Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 292(1–2):35–43CrossRefGoogle Scholar
  77. Santos A, Mayoral E, Johnson ME, Baarli BG, Silva CM da, Cachão M, Ledesma-Vázquez J (2012) Basalt mounds and adjacent depressions attract contrasting biofacies on a volcanically active Middle Miocene coastline (Porto Santo, Madeira Archipelago, Portugal). Facies 58:573–585CrossRefGoogle Scholar
  78. Santos A, Mayoral E, Baarli G, Cachão M, Silva CM da, Johnson M (2014) Estructuras de domicilio-equilibrio producidas por Gastrochaenidae (Bivalvia) en el Mioceno medio del sector de Lagos-Albufeira (Algarve, Portugal). In: Royo-Torres R, Verdú FJ, Alcalá L (eds), XXX Jornadas de Paleontología. Sociedad Española de Paleontología, Teruel, Fundamental 24:219–222Google Scholar
  79. Santos A, Mayoral E, Silva CM da, Cachão M (2016) Two remarkable examples of Portuguese Neogene bioeroded rocky shores: new data and synthesis. Comunicações Geológicas 103(Especial I):121–130Google Scholar
  80. Silva P, Johansen HW (1986) A reappraisal of the order Corallinales (Rhodophyceae). Eur J Phycol 21(3):245–254CrossRefGoogle Scholar
  81. Silva CM da, Cachão M, Martinell J, Domènech R (1999) Bioerosional evidence of rocky palaeoshores in the Neogene of Portugal. Bull Geol Soc Den 45:156–160Google Scholar
  82. Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas, a study in particle morphogenesis. J Geol 66:114–150CrossRefGoogle Scholar
  83. Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc 150:141–148CrossRefGoogle Scholar
  84. Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103CrossRefGoogle Scholar
  85. Teichert S (2014) Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci Rep 4:6972CrossRefGoogle Scholar
  86. Terrinha P, Rocha R, Rey J, Cachão M, Moura D, Roque C, Martins L, Valadares V, Cabral J, Azevedo MR, Barbero L, Clavijo E, Dias RP, Matias H, Madeira J, da Silva CM, Munhá J, Rebelo L, Ribeiro C, Vicente J, Noiva J, Youbi N, Bensalah MK (2013) A Bacia do Algarve: Estratigrafia, Paleogeografia e Tectónica. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, Lisboa, II. Escolar Editora, Lisboa, pp 29–166Google Scholar
  87. Tunnicliffe V (1982) The role of boring sponges in coral fracture. Colloques Internationaux du C.N.R.S. 291:309–315Google Scholar
  88. Voigt E (1965) Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologische Zeitschrift 39(3):193–211CrossRefGoogle Scholar
  89. Woelkerling WJ, Irvine LM (1986) The typification and status of Phymatolithon (Corallinaceae, Rhodophyta). Br Phycol J 21:55–80CrossRefGoogle Scholar
  90. Woelkerling WJ, Irvine LM, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293CrossRefGoogle Scholar
  91. Zamorano JH, Duarte WE, Moreno CA (1986) Predation upon Laternula elliptica (Bivalvia, Anatinidae): a Field Manipulation in South Bay, Antarctica. Polar Biol 6:139–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Geologia and Instituto Dom Luiz de geociênciasFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Divisão de Geologia MarinhaInstituto HidrográficoLisbonPortugal
  3. 3.SMNS-Staatliches Museum für Naturkunde StuttgartStuttgartGermany
  4. 4.CIBIO-Centro de Investigação em Biodiversidade Recursos Genéticos, InBio Laboratório Associado, Pólo dos Açores, Departamento de Biologia da Universidade dos AçoresPonta DelgadaPortugal
  5. 5.Department of GeosciencesWilliams CollegeWilliamstownUSA
  6. 6.Science and Technology Research CentreUniversity of HuelvaHuelvaSpain
  7. 7.Departamento de Ciencias de la Tierra, Facultad de Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain

Personalised recommendations