, 65:7 | Cite as

Bioerosion in fossil cephalopods: a case study from the Upper Carboniferous Buckhorn Asphalt Quarry Lagerstätte, Oklahoma, USA

  • Barbara SeussEmail author
  • Alexander Nützel
Original Article
Part of the following topical collections:
  1. Bioerosion: An interdisciplinary approach


The mid-Pennsylvanian (Desmoinesian–Virgilian) deposits from the Buckhorn Asphalt Quarry Lagerstätte near Sulphur, Oklahoma, are characterized by siliciclastic–carbonate rocks. One of these deposits is the ‘cephalopod coquina’ that contains a large amount of orthocerid and coiled nautiloid, and ammonoid shell remains. These were used for a detailed study on bioerosion in cephalopod shells in order to help in the reconstruction of the paleoenvironment and to increase the general knowledge on bioerosion in fossil cephalopods. More than 50 shell fragments were cast and investigated. The shells cast and investigated in this study comprise a diverse set of ichnotaxa-/forms. Besides chlorophyte and cyanobacterial traces, also rhodophyte, fungal, and spongal traces are present as well as those of unknown origin. In addition, there are six ichnoforms that might have foraminiferans as producers. In orthoceratids, Ichnoreticulina elegans and a curly morphotype of Scolecia isp. are most common while the abundance in coiled cephalopods is dominated by the ‘superthin form’, the ‘extremely thin form’, and Flagrichnus profundus. In total, 22 ichnotaxa and -forms were recognized and 12 of these have their oldest record in the Carboniferous. The succession of ichnotaxa/-forms in the casts of orthocones suggests deposition in the deep euphotic to dysphotic zone of the Buckhorn sea while shells of coiled specimens had drifted for a while; they were therefore more prone to bioerosion by autotrophs until they sank to the seafloor.


Cephalopod shells Desmoinesian Foraminiferans Nautiloidea Ammonoidea Bioerosion Fossil record Bathymetry 



We are very grateful for the support by and discussions with Max Wisshak (Senckenberg am Meer, Wilhelmshaven). Many thanks go to Mrs. Heltzel who allowed us to sample the Buckhorn Asphalt Quarry deposits on her private property. I would also like to acknowledge the reviewers for their helpful comments on the manuscript to improve its quality, namely S. Golubic and O. Vinn. This work was supported by the Deutsche Forschungsgemeinschaft [Grant number SE 2283/2-1]; and a FAU-award [‘Bavarian Equal Opportunities Sponsorship—Förderung von Frauen in Forschung und Lehre (FFL)—Promoting Equal Opportunities for Women in Research and Teaching’].


  1. Batters EAL (1902) A catalogue of the British marine algae. J Bot Suppl. 40:1–107Google Scholar
  2. Baumfalk YA, Nijholt KJ (1984) Talpinella and Orbitoides: 18 million years of close relationship between two foraminiferal genera. J Foramin Res 14:77–81CrossRefGoogle Scholar
  3. Bechtel FW (1962) Ammonoid fauna of the Pennsylvanian Wewoka Formation of Oklahoma. Dissertation, University of Iowa, Iowa CityGoogle Scholar
  4. Beuck L, López Correa M, Freiwald A (2008) Biogeographical distribution of Hyrrokkin (Rosalinidae, Foraminifera) and its host-specific morphological and textural trace variability. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 329–360CrossRefGoogle Scholar
  5. Blind W (1991) Über Anlage und Funktion von Kammerablagerungen in Orthoceren-Gehäusen. Palaeontogr Abt A 218:35–47Google Scholar
  6. Boardman DR II, Work DM, Mapes RH, Barrick JE (1994) Biostratigraphy of Middle and Late Pennsylvanian (Desmoinesian-Virgilian) ammonoids. KGS Bull 232:121Google Scholar
  7. Bornet E, Flahault C (1889) Sur quelques plantes vivant dans le test calcaire des mollusques. Bull Soc Bot France 36:147–179CrossRefGoogle Scholar
  8. Bromley RG, Wisshak M, Glaub I, Botquelen A (2007) Ichnotaxonomic review of dendriniform borings attributed to foraminiferans: Semidendrina igen. nov. In: Miller W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 518–530CrossRefGoogle Scholar
  9. Buatois LA, Wisshak M, Wilson MA, Mángano MG (2017) Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth Sci Rev 164:102–181CrossRefGoogle Scholar
  10. Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. J Sediment Petrol 50:881–904Google Scholar
  11. Campbell S, Kaźmierczak J, Golubić S (1979) Palaeoconchocelis starmachii gen. n., sp. n., an endolithic rhodophyte (Bangiaceae) from the Silurian of Poland. Acta Paleontol Pol 24:403–408Google Scholar
  12. Chatelain EE (1984) Ammonoids of the Marmaton Group Middle Pennsylvanian (Desmoinesian), Arkoma Basin, Oklahoma. Dissertation, University of Iowa, Iowa CityGoogle Scholar
  13. Cherchi A, Schroeder R (1991) Perforations branchues dues à des Foraminifères cryptobiologiques dans des coquilles actuelles et fossiles. C R Acad Sci 312:111–115Google Scholar
  14. Crick RE (1982) The mode and tempo of cameral deposit formation: evidence of orthoconic nautiloid physiology and ecology. Proc Natl Am Paleontol Conv 3:113–118Google Scholar
  15. Ercegovic A (1927) Tri nova roda litofiskih cijanoiceja sa jadranske obale. Acta Bot I Bot Univ Zagreb 2:78–84Google Scholar
  16. Ercegovic A (1932) Ekoloske i socioloske studije o litofitskim cijanoficejama sa Jugoslavenske obale Jadrana. Bull I Acad Yougoslave Sci Cl Sci Math Nat 26:129–220Google Scholar
  17. Ernst A, Seuss B, Taylor PD, Nützel A (2016) Bryozoan fauna of the Boggy Formation (Deese Group, Pennsylvanian) of the Buckhorn Asphalt Quarry, Oklahoma. Palaeobiol Palaeoenviron 96:517–540CrossRefGoogle Scholar
  18. Gektidis M (1997) Vorkommen, Ökologie und Taxonomie von Mikrobohrorganismen in ausgewählten Riffbereichen um die Insel Lee Stocking Island (Bahamas) und One Tree Island (Australien). Dissertation, Universität FrankfurtGoogle Scholar
  19. Glaub I (1994) Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Cour For Senck 174:324Google Scholar
  20. Glaub I (2004) Recent and sub-recent microborings from the upwelling area off Mauritania (West Africa) and their implications for palaeoecology. Geol Soc Lond Spec Publ 228:63–76CrossRefGoogle Scholar
  21. Glaub I, Vogel K (2004) The stratigraphic record of microborings. Foss Strata 51:126–135Google Scholar
  22. Glaub I, Golubic S, Gektidis M, Radtke G, Vogel K (2007) Microborings and microbial endoliths: geological implications. In: Miller W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 368–381CrossRefGoogle Scholar
  23. Golubic S, Campbell S, Spaeth C (1983) Kunstharzausgüsse fossiler Mikroben-Bohrgänge. Präparator 29:197–200Google Scholar
  24. Golubic S, Campbell SE, Lee S-J, Radtke G (2016) Depth distribution and convergent evolution of microboring organisms. Pal Z 90:315–326CrossRefGoogle Scholar
  25. Gregoire C (1988) Organic remnants in shells of Cambrian nautiloids and in cameral deposits of Pennsylvanian nautiloids. Senck Lethaea 69:73–86Google Scholar
  26. Ham WE (1969) Regional geology of the Arbuckle Mountains Oklahoma Part 1. Regional Geology. In: Geology of the Arbuckle Mountains. OGS Guide Book XVII, pp 5–50Google Scholar
  27. Hofmann K (1996) Die mikro-endolithischen Spurenfossilien der borealen Oberkreide Nordwest-Europas und ihre Faziesbeziehungen. Geol Jahrb Reihe A 136:3–153Google Scholar
  28. Hosgör I, Kosták M (2012) Occurrence of the Late Cretaceous belemnite Belemnitella in the Arabian Plate (Hakkari, SE Turkey) and its palaeogeographic significance. Cretaceous Res 37:35–42CrossRefGoogle Scholar
  29. ICBN (2000) International Code of Botanical Nomenclature (Saint Louis Code).
  30. ICZN (1999) International Code of Zoological Nomenclature.
  31. Ivanov A, Seuss B, Nützel A (2017) The fish assemblage from the Pennsylvanian Buckhorn Asphalt Quarry Lagerstätte (Oklahoma, USA). Pal Z 91:565–576CrossRefGoogle Scholar
  32. Kołodziej B (1997) Boring foraminifera from exotics of the Śtramberk-type limestones (Tithonian–lower Berrasian, Polish Carpathians). Ann Soc Geol Pol 67:249–256Google Scholar
  33. Kornmann P, Sahling P-H (1980) Ostreobium quekettii (Codiales, Chlorophyta). Helgoland Wiss Meer 34:115–122CrossRefGoogle Scholar
  34. Kulicki C, Landmann NH, Heaney MJ, Mapes RH, Tanabe K (2002) Morphology of the early whorls of goniatites from the Carboniferous Buckhorn Asphalt (Oklahoma) with aragonitic preservation. Abh Geol BA5 7:205–224Google Scholar
  35. Kutscher M (1972) Fossile Lebensspuren in der weißen Schreibkreide (Unter-Maastricht) der Insel Rügen. Aufschluß 23:26–34Google Scholar
  36. Lagerheim G (1886) Notes sur le Mastigocoleus, nouveau genre des algues marines de l’ordre des Phycochromacées. Notarisia 1:65–69Google Scholar
  37. Lukas KJ, Golubic S (1983) New endolithic cyanophytes from the North Atlantic Ocean. II. Hyella gigas Lukas and Golubic sp. nov. from the Florida continental margin. J Phycol 19:129–136CrossRefGoogle Scholar
  38. Mägdefrau K (1937) Lebensspuren fossiler “Bohr”-Organismen. Beit Naturk Forsch SW Deut 2:54–67 (plus plates) Google Scholar
  39. Marcinowski R (1972) Belemnites of the genus Actinocamax Miller, 1832, from the Cenomanian of Poland. Acta Geol Pol 22:247–256 (plus plates) Google Scholar
  40. Nadjin DP (1969) Morphologia I paleobiologia verkhnemelovykh belemnitov. MoscowGoogle Scholar
  41. Niko S, Seuss B, Mapes RH (2018) Desmoinesian (Middle Pennsylvanian) orthocerid cephalopods from the Buckhorn Asphalt Lagerstätte in Oklahoma, Midcontinent North America. Paleontol Res 22:20–36CrossRefGoogle Scholar
  42. Perkins RD, Tsentas CI (1976) Microbial infestation of carbonate substrates planted on the St. Croix shelf, West Indies. Bull Geol Soc Am 87:1615–1628CrossRefGoogle Scholar
  43. Plewes CR, Palmer TJ, Haynes JR (1993) A boring foraminiferan from the Upper Jurassic of England and Northern France. J Micropalaeontol 12:83–89CrossRefGoogle Scholar
  44. Pugaczewska H (1965) Les organismes sédentaires sur les rostres des Bélemnites du Crétacé supérieur. Acta Palaeontol Pol 10:73–95 (plus plates) Google Scholar
  45. Quenstedt FA (1849) Petrefaktenkunde Deutschlands—Die Cephalopoden. Ludwig Friedrich Fues, Tübingen, [text volume & atlas]Google Scholar
  46. Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Cour For Senck 138:185Google Scholar
  47. Radtke G, Golubic S (2005) Microborings in mollusk shells, Bay of Safaga, Egypt: morphometry and ichnology. Facies 51:118–134CrossRefGoogle Scholar
  48. Radtke G, Schäfer P, Blaschek H, Golubic S (2011) Microborings from shallow marine habitats on both sides of the Panama Isthmus. Ann Naturhist Mus Wien, Serie A 113:245–265Google Scholar
  49. Radwański A (1972) Remarks on the nature of belemnicolid borings Dendrina. Acta Geol Pol 22:257–264Google Scholar
  50. Reich M, Frenzel P (2002) Die Fauna und Flora der Rügener Schreibkreide. Archiv für Geschiebekunde 3:73–284Google Scholar
  51. Ristedt H (1971) Zum Bau der orthoceriden Cephalopoden. Palaeontogr 137:155–195Google Scholar
  52. Schmidt H (1992) Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). Frankfurter Geowiss Arb A 12:228Google Scholar
  53. Schneider J (1976) Biological and inorganic factors in the destruction of limestone coasts. Contrib Sedimentol 6:1–112Google Scholar
  54. Schneider J, Torunski H (1983) Biokarst on limestone coasts, morphogenesis and sediment production. Mar Ecol 4:45–63CrossRefGoogle Scholar
  55. Seuss B, Nützel A, Mapes RH, Yancey TE (2009) Facies and fauna of the Pennsylvanian Buckhorn Asphalt Quarry deposit: a review and new data on an important Palaeozoic fossil Lagerstätte with aragonite preservation. Facies 55:609–645CrossRefGoogle Scholar
  56. Seuss B, Mapes RH, Klug C, Nützel A (2012a) Exceptional cameral deposits in a sublethally injured Carboniferous orthoconic nautiloid from the Buckhorn Asphalt Lagerstätte in Oklahoma, USA. Acta Palaeontol Pol 57:375–390CrossRefGoogle Scholar
  57. Seuss B, Nützel A, Scholz H, Frýda J (2012b) The Paleozoic evolution of the gastropod larval shell: larval armor and tight coiling as a result of predation-driven heterochronic character displacement. Evol Dev 142:212–228CrossRefGoogle Scholar
  58. Seuss B, Titschack J, Seifert S, Neubauer J, Nützel A (2012c) Oxygen and stable carbon isotopes from a nautiloid from the middle Pennsylvanian (Late Carboniferous) impregnation Lagerstätte ‘Buckhorn Asphalt Quarry’—primary paleo-environmental signals versus diagenesis. Palaeogeogr Palaeocl 319–320:1–15CrossRefGoogle Scholar
  59. Seuss B, Senowbari-Daryan B, Nützel A, Dittrich S, Neubauer J (2014) A chaetetid sponge assemblage from the Desmoinesian (upper Moscovian) Buckhorn Asphalt Quarry Lagerstätte in Oklahoma, USA. Riv Ital Paleontol S 120:3–26Google Scholar
  60. Seuss B, Hembree DI, Wisshak M, Mapes RH, Landman NH (2015a) Taphonomy of backshore versus deep-marine collected nautilus macromphalus conchs (New Caledonia). Palaios 30:503–513CrossRefGoogle Scholar
  61. Seuss B, Wisshak M, Mapes RH, Landman NH (2015b) Syn-vivo bioerosion of Nautilus by endo- and epilithic foraminiferans (New Caledonia and Vanuatu). PlosOne 10:e0125558. CrossRefGoogle Scholar
  62. Seuss B, Wisshak M, Mapes RH, Hembree DI, Landman NH, Lignier V (2016) Microbial bioerosion of erratic sub-fossil Nautilus shells in a karstic cenote (Lifou, Loyalty Islands, New Caledonia). Ichnos 23:108–115CrossRefGoogle Scholar
  63. Smith HJ (1938) The cephalopod fauna of the Buckhorn Asphalt, Private edn. University of Chicago Libraries, Chicago Illinois, p 40Google Scholar
  64. Taylor PD, Barnbrook JA, Sendino C (2013) Endolithic biota of belemnites from the Early Cretaceous Speeton Clay Formation of North Yorkshire, UK. P Yorks Geol Soc 59:227–245CrossRefGoogle Scholar
  65. Unklesbay AG (1962) Pennsylvanian cephalopods of Oklahoma. OGS Bull 96:150Google Scholar
  66. Vénec-Peyré M-T (1985) Le rôle de certains Foraminiféres dans la bioérosion et la sédimentogenèse. C R Acad Sci 300:83–88Google Scholar
  67. Vénec-Peyré M-T (1988) Two new species of bioeroding Trochamminidae (Foraminiferida) from French Polynesia. J Foramin Res 18:1–5CrossRefGoogle Scholar
  68. Vogel K, Brett CE (2009) Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: the early history of light-related microendolithic zonation. Palaeogeor Palaeoclimatol 281:1–24CrossRefGoogle Scholar
  69. Vogel K, Bundschuh M, Glaub I, Hofmann K, Radtke G, Schmidt H (1995) Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry. Neues Jahrb Geol Pal-A 195:49–61CrossRefGoogle Scholar
  70. Walker S, Hancock LG, Bowser SS (2017) Diversity, biogeography, body size and fossil record of parasitic and suspected parasitic foraminifera: a review. J Foramin Res 47:34–55CrossRefGoogle Scholar
  71. Wilmotte A, Golubic S (1991) Morphological and genetic criteria in the taxonomy of cyanophyta/cyanobacteria. Algological Stud 64:1–24Google Scholar
  72. Wisshak M (2006) High-latitude bioerosion: the Kosterfjord experiment. Lect Notes Earth Sci 109:202Google Scholar
  73. Wisshak M (2008) Two new dwarf Entobia ichnospecies in a diverse aphotic ichnocoenosis (Pleistocene/Rhodes, Greece). In: Wisshak M, Tapanila T (eds) Current developments in bioerosion. Springer, Berlin, pp 213–234CrossRefGoogle Scholar
  74. Wisshak M (2012) Microbioerosion. developments in sedimentology 64. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Elsevier, Amsterdam, pp 213–234CrossRefGoogle Scholar
  75. Wisshak M, Porter D (2006) The new ichnogenus Flagrichnus—a palaeoenvironmental indicator for cold-water settings? Ichnos 13:135–145CrossRefGoogle Scholar
  76. Wisshak M, Rüggeberg A (2006) Colonisation and bioerosion of experimental substrates by benthic foraminiferans from euphotic to aphotic depths (Kosterfjord, SW Sweden). Facies 52:1–17CrossRefGoogle Scholar
  77. Wisshak M, Gektidis M, Freiwald A, Lundälv T (2005) Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51:93–117CrossRefGoogle Scholar
  78. Wisshak M, Seuß B, Nützel A (2008) Evolutionary implications of an exceptionally preserved Carboniferous microboring assemblage in the Buckhorn Asphalt Lagerstätte (Oklahoma, USA). In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 21–54CrossRefGoogle Scholar
  79. Wisshak M, Tribollet A, Golubic S, Jakobsen J, Freiwald A (2011) Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9:492–520CrossRefGoogle Scholar
  80. Wisshak M, Alexandrakis E, Hoppenrath M (2014) The diatom attachment scar Ophthalmichnus lyolithon igen. et isp. n. Ichnos 21:111–118CrossRefGoogle Scholar
  81. Wisshak M, Titschak J, Kahl W-A, Girod P (2017) Classical and new bioerosion trace fossils in Cretaceous belemnite guards characterised via micro-CT. Foss Rec 20:173–199CrossRefGoogle Scholar
  82. Young HR, Nelson CS (1988) Endolithic biodegradation of cool-water skeletal carbonates on Scott shelf, northwestern Vancouver Island. Can J Sed Geol 60:251–267CrossRefGoogle Scholar
  83. Zebrowski G (1936) New genera of Cladochytriaceae. Ann Mo Bot Gard 23:553–564CrossRefGoogle Scholar
  84. Zeff ML, Perkins RD (1979) Microbial alteration of Bahamian deep-sea carbonates. Sedimentology 26:175–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen Nürnberg, GeoZentrum Nordbayern, PaleobiologyErlangenGermany
  2. 2.Bayerische Staatssammlung für Paläontologie und Geologie, Department für Geo- und Umweltwissenschaften, Sektion für PaläontologieGeobio-CenterLMU Ludwig-Maximilians-UniversitätMunichGermany

Personalised recommendations