Advertisement

Facies

, 65:3 | Cite as

Spatial and temporal facies evolution of a Lower Jurassic carbonate platform, NW Tethyan margin (Mallorca, Spain)

  • Ana SevillanoEmail author
  • Idoia Rosales
  • Beatriz Bádenas
  • Antonio Barnolas
  • José María López-García
Original Article
  • 145 Downloads

Abstract

The variety of depositional facies of a Lower Jurassic carbonate platform has been investigated on the island of Mallorca along a transect comprising six stratigraphic profiles. Twenty-nine facies and sub-facies have been recognized, grouped into seven facies associations, ranging in depositional environment from supratidal/terrestrial and peritidal to outer platform. Spatial and temporal (2D) facies distribution along the transect reflects the evolution of the carbonate platform with time showing different facies associations, from a broad peritidal platform (stage 1) to a muddy open platform (stage 2), and finally to a peritidal to outer carbonate platform (stage 3). Stage 1 (early Sinemurian to earliest late Sinemurian) corresponds to a nearly-flat peritidal-shallow subtidal epicontinental platform with facies belts that shifted far and fast over the whole study area. The evolution from stage 1 to stage 2 (late Sinemurian) represents a rapid flooding of the epicontinental shallow platform, with more open-marine conditions, and the onset of differential subsidence. During stage 3 (latest Sinemurian), peritidal and shallow-platform environments preferentially developed to the northeast (Llevant Mountains domain) with a rapid transition to middle-outer platform environments toward the northwest (Tramuntana Range domain). Stages 1 and 3 present facies associations typical of Bahamian-type carbonates, whereas stage 2 represents the demise of the Bahamian-type carbonate factory and proliferation of muddy substrates with suspension-feeders. The described platform evolution responded to the interplay between the initial extensional tectonic phases related to Early Jurassic Tethyan rifting, contemporaneous environmental perturbations, and progressive platform flooding related to the Late Triassic–Early Jurassic worldwide marine transgression and associated accommodation changes.

Keywords

Peritidal facies Carbonate platform Lias Mallorca Balearic basin Tethyan rift 

Notes

Acknowledgements

The authors are grateful to F. Schlagintweit and M. Septfontaine for helping and review of the benthic foraminifera and algae determinations. BB thanks the research project CGL2017-85038-P subsidized by Ministerio de Economía, Industria y Competitividad of the Spanish Government, and the project E18 (Aragosaurus: Recursos Geológicos y Paleoambientes) of the Government of Aragón. We also thank the reviewers Toni Simó and Mohamed Soussi, and Associated Editor Maurice Tucker, for fruitful reviews and comments that helped to improve the original manuscript.

References

  1. Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. J Sediment Petrol 37:1163–1178CrossRefGoogle Scholar
  2. Álvaro M, Barnolas A, Cabra P, Comas-Rengifo MJ, Fernández-López SR, Goy A, Del Olmo P, Ramírez del Pozo J, Simo A, Ureta S (1989) El Jurásico de Mallorca (Islas Baleares). Cuad Geol Ibérica 13:67–120Google Scholar
  3. Aurell M, Meléndez G, Oloriz F, Bádenas B, Caracuel J, García-Ramos JC, Goy A, Linares A, Quesada S, Robles S, Rodriguez-Tovar FJ, Rosales I, Sandoval J, Suáez de Centi C, Tavera JM, Valenzuela M (2002) Jurassic. In: Gibbons W, Moreno T (eds) The geology of Spain. Geol Soc, London, pp 213–254CrossRefGoogle Scholar
  4. Aurell M, Robles S, Bádenas B, Rosales I, Quesada S, Meléndez G, García-Ramos JC (2003) Transgressive–regressive cycles and Jurassic palaeogeography of northeast Iberia. Sediment Geol 162:239–271CrossRefGoogle Scholar
  5. Azañón JM, Galindo-Zaldivar J, García-Dueñas V, Jabaloy A (2002) Alpine Tectonics II: Betic Cordillera and Balearic Islands. In: Gibbons W, Moreno T (eds) The Geology of Spain. Geol Soc, London, pp 401–416CrossRefGoogle Scholar
  6. Bádenas B, Aurell M (2010) Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain). Facies 56:89–110CrossRefGoogle Scholar
  7. Bádenas B, Aurell M, Bosence D (2010) Continuity and facies heterogeneities of shallow carbonate ramp cycles (Sinemurian, Lower Jurassic, north-east Spain). Sedimentology 57:1021–1048CrossRefGoogle Scholar
  8. Barattolo F, Bigozzi A (1996) Dasycladaleans and depositional environments of the Upper Triassic-Liassic carbonate platform of the Gran Sasso (central Apennines, Italy). Facies 35:163–208CrossRefGoogle Scholar
  9. Barnolas A, Simó A (1984) Sedimentología. In: Barnolas A (ed) Sedimentología del Jurásico de Mallorca: Grupo Español del Mesozoico. IGME-CGS, Madrid, pp 73–119Google Scholar
  10. Beales FW (1958) Ancient sediments of Bahamian type. AAPG Bull 42:1845–1880Google Scholar
  11. Bernoulli D, Jenkyns HC (1974) Alpine, Mediterranean and central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In: Dott RH, Shaver RH (eds) Modern and ancient geosynclinal sedimentation, vol 19. SEPM Spec Publ, Broken Arrow, pp 129–160CrossRefGoogle Scholar
  12. Bosence DWJ, Wood J, Rose EPF, Qing H (2000) Low- and high frequency sea-level changes control peritidal carbonate cycles, facies and dolomitization in the Rock of Gibraltar (Early Jurassic, Iberian Peninsula). J Geol Soc London 157:61–74CrossRefGoogle Scholar
  13. Bosence DWJ, Procter E, Aurell M, Kahla AB, Boudagher-Fadel M, Casaglia F, Cirilli S, Mehdie M, Nieto L, Rey J, Scherreiks R, Soussi M, Waltham D (2009) A dominant tectonic signal in high-frequency, peritidal carbonate cycles? A regional analysis of Liassic platforms from western Tethys. J Sediment Res 79:389–415CrossRefGoogle Scholar
  14. Boudagher-Fadel MK, Bosence DWJ (2007) Early Jurassic benthic foraminiferal diversification and biozones in shallow-marine carbonates of western Tethys. Senckenb Lethaea 87:1–39CrossRefGoogle Scholar
  15. Brandano M, Lipparini L, Campagnoni V, Tomassetti L (2012) Downslope-migrating large dunes in the Chattian carbonate ramp of the Majella Mountains (central Apennines, Italy). Sediment Geol 255–256:29–41CrossRefGoogle Scholar
  16. Chafiki D, Canérot J, Souhel A, El Hairiri K, Taj Eddine K (2004) The Sinemurian carbonate mud-mounds from central High Atlas (Morocco): stratigraphy, geometry, sedimentology and geodynamic patterns. J Afr Earth Sci 39:337–346CrossRefGoogle Scholar
  17. Chaudhuri AK (2003) Climbing ripple structure and associated storm-lamination from a Proterozoic carbonate platform succession: their environmental and petrogenetic significance. J Earth Syst Sci 114:199–209CrossRefGoogle Scholar
  18. Colom G (1942) Sobre nuevos hallazgos de yacimientos fosilíferos del Lias medio y superior en la Sierra Norte de Mallorca. Boletín de la Real Sociedad Española de Historia Natural. Tomo 11:221–265Google Scholar
  19. Colom G (1966) Dos niveles micropaleontológicos interesantes en el Lias inferior del Sur de España y baleares. Acta Geologica Hispanica 1(3):15–18Google Scholar
  20. Colom G (1970) Estudio litológico y micropaleontológico del Lías de la Sierra Norte y porción central de la isla de Mallorca. Memorias de la Real Academia de la Ciencias exactas, físicas y naturales de Madrid. Tomo XXIV, Mem 2Google Scholar
  21. Colom G (1980) Estudios sobre las litofacies y micropaleontología del Lias inferior de la isla de Cabrera (Baleares). Rev Esp Micropaleontol 12(1):47–64Google Scholar
  22. Colom G, Dufaure P (1962) Présence de la zone à Palaeodasycladus mediterraneus (Pia) dans le Lias moye du Pla de Cuber (Majorque). Comptes Rendus Acad Sci Paris 12:2617–2619Google Scholar
  23. Cook HE, Mullins HT (1983) Basin margin environments. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments, vol 33. AAPG Mem, pp 540–617Google Scholar
  24. Crevello PD (1991) High-frequency carbonate cycles and stacking patterns: interplay of orbital forcing and subsidence on Lower Jurassic rift platforms, High Atlas, Morocco. In: Franseen EK, Watney WL, Kendall CGStC, Ross W (eds) Sedimentary modeling: computer simulations and methods for improved parameter definition, vol 233. Kansas Geological Survey Bulletin, pp 207–230Google Scholar
  25. Dahanayake K (1977) Classification of oncoids from the Upper Jurassic carbonates of the French Jura. Sediment Geol 18:337–353CrossRefGoogle Scholar
  26. Dasgupta P, Manna P (2011) Geometrical mechanism of inverse grading in grain-flow deposits: an experimental revelation. Earth Sci Rev 104:186–198CrossRefGoogle Scholar
  27. De Graciansky PC, Jacquin T, Hesselbo SP (1998) The Ligurian cycle: an overview of the Lower Jurassic 2nd-order transgressive/regressive facies cycles in Western Europe. In: De Graciansky PC, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins, vol 60. SEPM Spec Publ, Broken Arrow, pp 467–479CrossRefGoogle Scholar
  28. Decarlis A, Lualdi A (2010) Synrift sedimentation on the northern Tethys margin: an example from the Ligurian Alps (Upper Triassic to Lower Cretaceous, Prepiedmont domain, Italy). Int J Earth Sci 100:1589–1604CrossRefGoogle Scholar
  29. Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) (2000) Atlas Peri-Tethys, palaeogeographical maps, I-XX. CCGM/CGMW, Paris, p 268Google Scholar
  30. Dewey JF, Pitman WC, Ryan WBF, Bonnin J (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84:3137–3180CrossRefGoogle Scholar
  31. Di Stefano P, Galácz A, Mallarino G, Mindszenty A, Vörös A (2002) Birth and early evolution of a Jurassic escarpment: Monte Kumeta, western Sicily. Facies 46:47–50CrossRefGoogle Scholar
  32. Dott RH, Bourgeois J (1982) Hummocky stratification: significance of its variable bedding sequences. Geol Soc Am Bull 93:663–680CrossRefGoogle Scholar
  33. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. AAPG Mem 1, pp 108–121Google Scholar
  34. Einsele G (1991) Submarine mass flow deposits and turbidites. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 313–339Google Scholar
  35. Einsele G, Seilacher A (1991) Distinction of tempestites and turbidites. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 377–382Google Scholar
  36. Embry AF (1993) Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Artic Archipelago. Can J Earth Sci 30:301–320CrossRefGoogle Scholar
  37. Fallot P (1922) Étude geologique de la sierra de Majorque. Thése détat. Libr. Polytechnique Ch. Béranger, Paris i Liège, p 481Google Scholar
  38. Fernández-Bastero S, Velo A, García T, Gago-Duport L, Santos A, García-Gil S, Vilas F (2000) Las glauconitas de la plataforma continental gallega: indicadores geoquímicos del grado de evolución. J Iber Geol 26:233–247Google Scholar
  39. Flügel E (2010) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin, p 984Google Scholar
  40. Fornós J, Rodriguea-Perea A, Sabat F (1984) El mesozoico de la Serra de Son Amoixa (Serres de Llevant, Mallorca). I Congreso Español de Geología. Tomo 1, pp 173–185Google Scholar
  41. Fugagnoli A, Bassi D (2015) Taxonomic and biostratigraphic reassessment of Lituosepta recoarensis Cati, 1959 (Foraminifera, Lituolacea). J Foramin Res 45(4):402–412CrossRefGoogle Scholar
  42. Gabilly J, Carou E, Hantzpergue P (1985) Les grandes discontinuités stratigraphiques au Jurassique: témoins d’événements eustatiques, biologiques et sédimentaires. Bull Soc géol Fr 1(3):391–401Google Scholar
  43. Gelabert B (1997) La estructura geológica de la mitad occidental de la isla de Mallorca. PhD Thesis. Colección MEMORIAS (IGME), pp 129Google Scholar
  44. Hallam A (1981) A revised sea-level curve for the early Jurassic. J Geol Soc London 138:735–743CrossRefGoogle Scholar
  45. Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37CrossRefGoogle Scholar
  46. Harder H (1980) Syntheses of glauconite at surface temperatures. Clays Clay Min 28:217–222CrossRefGoogle Scholar
  47. Harris PM (1986) Depositional environments of carbonate platforms. In: Warme JE, Shanley KW (eds) Carbonate depositional environments, modern and ancient, Part 2: carbonate platforms. Colorado School of Mines Quarterly 80(4):31–60Google Scholar
  48. Jacquin T, De Graciansky PC (1998) Major transgressive/regressive cycles: the strati-graphic signature of European basin development. In: De Graciansky PC, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic sequence Stratigraphy of European basins, vol 60. SEPM Spec Publ, Broken Arrow, pp 15–29CrossRefGoogle Scholar
  49. James NP (1984) Shallowing-upward sequences in carbonates. In: Walker RG (ed) Facies models. Geoscience Canada, pp 213–228Google Scholar
  50. Jenkyns HC, Weedon GP (2013) Chemostratigaphy (CaCO3, TOC, δ13Corg) of Sinemurian (Lower Jurassic) black shales from the Wessex Basin, Dorset, and palaeoenvironmental implications. Newsl Stratigr 46:1–21CrossRefGoogle Scholar
  51. Leinfelder R (1987) Formation and significance of black pebbles from Ota limestone (Upper Jurassic, Portugal). Facies 17:159–170CrossRefGoogle Scholar
  52. Marino M, Santantonio M (2010) Understanding the geological record of carbonate platform drowning across rifted Tethyan margins: examples from the Lower Jurassic of the Apennines and Sicily (Italy). Sediment Geol 225:116–137CrossRefGoogle Scholar
  53. Martín-Chivelet J, Palma RM, López-Gómez J, Kietzmann DA (2011) Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites (Neuquén Basin, Argentina). Sediment Geol 235:210–221CrossRefGoogle Scholar
  54. Martinuš M, Bucković D, Kukoč D (2012) Discontinuity surfaces recorded in shallow-marine platform carbonates: an example from the early Jurassic of the Velebit Mt. (Croatia). Facies 58:649–669CrossRefGoogle Scholar
  55. Masetti D, Figus B, Jenkyns HC, Barattolo F, Mattioli E, Posenato R (2017) Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (early Jurassic) of the Tethyan region: evidence from the Southern Alps (northern Italy). Geol Mag 154:625–650CrossRefGoogle Scholar
  56. Mazzullo SJ (1977) Shrunken (geopetal) ooids: evidence of origin unrelated to carbonate-evaporite diagenesis. J Sediment Petrol 47:392–397CrossRefGoogle Scholar
  57. Mehdi M, Neuweiler F, Wilmsen M (2003) Les formations du Lias inférieur du Haut Atlas central de Rich (Maroc): précisions lithostratigraphiques et étapes de l’évolution du bassin. Bull Soc géol Fr 174:227–242CrossRefGoogle Scholar
  58. Merino-Tomé O, Della Porta G, Kenter JAM, Verwer K, Harris P, Adams EW, Playton T, Corrochano D (2012) Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): influence of tectonics, eustasy and carbonate production. Sedimentology 59:118–155CrossRefGoogle Scholar
  59. Miller CR, James NP, Kyser TK (2013) Genesis of blackened limestone clasts at Late Cenozoic subaerial exposure surfaces, Southern Australia. J Sediment Res 83:339–353CrossRefGoogle Scholar
  60. Paredes R, Comas-Rengifo MJ, Duarte LV (2013) Dynamics of upper Sinemurian macrobenthic groups (bivalves and brachiopods) preserved in organic-rich facies of the Lusitanian basin (western Iberia). In: Rocha R, Pais J, Kullberg JC, Finney S (eds) STRATI 2013: first international congress on stratigraphy at the cutting edge of stratigraphy. Springer, Berlin, pp 1049–1052Google Scholar
  61. Payros A, Pujalte V, Tosquella J, Orue-Etxebarria X (2010) The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): an analogue of future shallow-marine carbonate systems? Sediment Geol 228:184–204CrossRefGoogle Scholar
  62. Pedersen GK (1985) Thin, fine-grained storm layers in a muddy shelf sequence: an example from the Lower Jurassic in the Stenlille 1 well, Denmark. J Geol Soc London 142:357–374CrossRefGoogle Scholar
  63. Pomoni-Papaioannou F, Kostopoulou V (2008) Microfacies and cycle stacking pattern in Liassic peritidal carbonate strata, Gavrovo-Tripolitza platform, Peloponnesus, Greece). Facies 54:417–431CrossRefGoogle Scholar
  64. Pratt BR, James NP, Cowan CA (1992) Peritidal carbonates. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, Newfoundland, pp 303–322Google Scholar
  65. Prescott DM (1988) The geochemistry and palaeoenvironmental significance of iron pisoliths and ferromanganese crusts from the Jurassic of Majorca, Spain. Eclogae Geol Helv 81:387–414Google Scholar
  66. Preto N, Breda A, Dal Corso J, Franceschi M, Rocca F, Spada C, Roghi G (2017) The Loppio Oolitic Limestone (Early Jurassic, Southern Alps): a prograding oolitic body with high original porosity originated by a carbonate platform crisis and recovery. Mar Petrol Geol 79:394–411CrossRefGoogle Scholar
  67. Quesada S, Robles S, Rosales I (2005) Depositional architecture and transgressive–regressive cycles within Liassic backstepping carbonate ramps in the Basque-Cantabrian basin, northern Spain. J Geol Soc Lond 162:531–548CrossRefGoogle Scholar
  68. Ramos-Guerrero E, Rodriguez-Perea A, Sabat F, Serra-Kiel J (1989) Cenozoic tectosedimentary evolution of Mallorca Island. Geodin Acta 3(1):53–72CrossRefGoogle Scholar
  69. Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Heidelberg, pp 21–51CrossRefGoogle Scholar
  70. Riding JB, Leng MJ, Kender S, Hesselbo SP, Feist-Burkhardt S (2013) Isotopic and palynological evidence for a new Early Jurassic environmental perturbation. Palaeogeogr Palaeoclimatol Palaeoecol 374:16–27CrossRefGoogle Scholar
  71. Robles S, Quesada S (1995) La rampa dominada por tempestades del Lías inferior de la zona occidental de la Cuenca Vascocantábrica. Libro de Comunicaciones, XIII Congreso Español de Sedimentología, Teruel, pp 109–110Google Scholar
  72. Romano R, Barattolo F, Masetti D (2005) Biostratigraphic evidence of the middle Liassic hiatus in the Foza section (eastern sector of the Trento Platform, Calcari Grigi Formation, Venetian Prealps). Boll Soc Geol Ital 124:301–312Google Scholar
  73. Rosales I, Barnolas A, Goy A, Sevillano A, Armendáriz M, López-García JM (2018) Isotope records (C-O-Sr) of late Pliensbachian-early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 497:168–185CrossRefGoogle Scholar
  74. Ruiz-Ortiz PA, Bosence DW, Rey J, Nieto LM, Castro JM, Molina JM (2004) Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, Southern Spain). Basin Res 16:235–257CrossRefGoogle Scholar
  75. Rychliński T, Uchman A, Gaździcki A (2018a) Lower Jurassic Bahamian-type facies in the Choč Nappe (Tatra Mts, West Carpathians, Poland) influenced by palaeocirculation in the Western Tethys. Facies 64:15CrossRefGoogle Scholar
  76. Rychliński T, Gaździcki A, Uchman A (2018b) Dasycladacean alga Palaeodasycladus in the northern Tethys (West Carpathian, Poland) and its new palaeogeographic range during the Early Jurassic. Swiss J Geosci.  https://doi.org/10.1007/s00015-018-0301-z CrossRefGoogle Scholar
  77. Sabat F (1986) Estructura Geològica de les Serres de Llevant de Mallorca (Balears). PhD Thesis. Universitat de Barcelona, pp 128Google Scholar
  78. Santantonio M, Fabbi S, Aldega L (2016) Mesozoic architecture of a tract of the European-Iberian continental margin: insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, southern Italy). Sediment Geol 331:94–113CrossRefGoogle Scholar
  79. Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM Concepts in Sedimentology and Paleontology, vol 8. p 200.  https://doi.org/10.2110/csp.05.08
  80. Scotese CR, Schettino A (2017) Late Permian–Early Jurassic Paleogeography of Western Tethys and the World. In: Soto JI, Flinch JF, Tari G (eds) Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, London, pp 57–95Google Scholar
  81. Schlager W, Reijmer JJG, Droxler A (1994) Highstand shedding of carbonate platforms. J Sediment Res B64(3):270–281Google Scholar
  82. Septfontaine M (1984) Biozonation (a l’aide des Foraminifères imperforés) de la plate-forme interne carbonatée liasique du Haut Atlas (Maroc). Rev Micropaléont 27:209–229Google Scholar
  83. Sevillano A, Rosales I, Barnolas A, Gil-Peña I, Armendáriz M, Simó JA (2010) Significado y origen microbiano de la costra ferruginosa con estromatolitos pelágicos del Jurásico de Mallorca. In: Ruiz-Omeñaca JI, Piñuea L, García-Ramos JC (eds) Comunicaciones del V Congreso del Jurásico de España. Museo del Jurásico de Asturias, pp 200–203Google Scholar
  84. Sevillano A, Bádenas B, Rosales I, Barnolas A, López-García JM (2013) Facies y secuencias de la plataforma carbonatada somera sinemuriense en la isla de Mallorca (Seccion Es Barraca), España. Geogaceta 54:15–18Google Scholar
  85. Shinn EA (1983) Birdseyes, fenestrae, shrinkage pores, and loferites: a reevaluation. J Sediment Res 53:619–628Google Scholar
  86. Soussi M, Ismaïl MHB (2000) Platform collapse and pelagic seamount facies: Jurassic development of central Tunisia. Sediment Geol 133:93–113CrossRefGoogle Scholar
  87. Soussi M, Enay R, Mangold C, Turki MM (2000) The Jurassic events and their sedimentary and stratigraphic records on the Southern Tethyan margin in Central Tunisia. In: Crasquin-Soleau S, Barrier E (eds) Peri-Tethys, Memoir 5: new data on Peri-Tethyan sedimentary basins, vol 182. Memoires du Museum Natl d’Histoires Nat, pp 57–92Google Scholar
  88. Strasser A (1986) Ooids in Purbeck limestones (Lower Cretaceous) of the Swiss and French Jura. Sedimentology 33:711–727CrossRefGoogle Scholar
  89. Strasser A (1991) Lagoonal-peritidal sequences in carbonate environments: autocyclic and allocyclic processes. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 709–721Google Scholar
  90. Strasser A, Arnaud H, Baudin F, Rohl U (1995) Small-scale shallow-water carbonate sequences of resolution Guyot (Sites 866, 867, and 868). In: Winterer EL, Sager WW, Firth JV, Sinton JM (eds) Proceedings of the ocean drilling program, scientific results, vol 143, pp 119–131Google Scholar
  91. Suárez-González P, Quijada EI, Benito MI, Mas R, Merinero R, Riding R (2014) Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sediment Geol 300:11–27CrossRefGoogle Scholar
  92. Thierry J (2000) Late Sinemurian (193–191 Ma). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biji-DubalB, Brunet MF, Cadet JP, Crasquin S, SandulescuM (eds) Atlas Peri-Tethys. Palaeogeographical Maps—explanatory notes. Commission for the Geologic Map of the World, Paris, pp 49–59Google Scholar
  93. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 496CrossRefGoogle Scholar
  94. Velić I (2007) Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe). Geol Croat 60:1–113Google Scholar
  95. Vera JA, Jiménez de Cisneros C (1993) Palaeogeographic significance of black pebbles (Lower Cretaceous, Prebetic, southern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 102:89–102CrossRefGoogle Scholar
  96. Vierek A (2010) Source and depositional processes of coarse-grained limestone event beds in Fransian slope deposits (Kostomloty-Mogilki quarry, Holy Cross Mountains, Poland). Geologos 16(3):153–168CrossRefGoogle Scholar
  97. Vulpuis S, Kiessling W (2018) New constraints on the last aragonite–calcite sea transition from early Jurassic ooids. Facies 64:3.  https://doi.org/10.1007/s10347-017-0516-x CrossRefGoogle Scholar
  98. Wilmsen M, Neuweiler F (2008) Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas rift basin, Morocco. Sedimentology 55:773–807CrossRefGoogle Scholar
  99. Wright VP, Azerêdo AC (2006) How relevant is the role of macrophytic vegetation in controlling peritidal carbonate facies? Clues from Upper Jurassic of Portugal. Sediment Geol 186:147–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Geológico y Minero de España (IGME)Palma de MallorcaSpain
  2. 2.Instituto Geológico y Minero de España (IGME)MadridSpain
  3. 3.Departamento de Ciencias de la TierraUniversidad de ZaragozaZaragozaSpain

Personalised recommendations