, 64:30 | Cite as

Refining the late Silurian sea-level history of the Prague Syncline—a case study based on the Přídolí GSSP (Czech Republic)

  • František VacekEmail author
  • Ladislav Slavík
  • Katarzyna Sobień
  • Pavel Čáp
Original Article


A 50-m-thick section in the Požáry quarry, Prague Syncline (Czech Republic) spanning the upper Silurian (uppermost Ludlow and Přídolí) to the lowermost Devonian (Lochkovian) has been studied using sedimentological and physical stratigraphical (gamma-ray spectrometry) methods combined with conodont biostratigraphy. Conodont data demonstrate the presence of local conodont biozones: “Ozarkodina” crispa (uppermost Ludlow)—Zieglerodina zellmeri (base of Přídolí)—Zieglerodina ivochlupaciDelotaxis detorta—“Ozarkodina” eosteinhornensis s.s.—Zieglerodina klonkensisIcriodus hesperius-optima (lowermost Lochkovian). The studied section represents a transgressive–regressive facies succession characterized by a transition from distal calciturbidites deposited in a distally steepened carbonate platform during transgression and sea-level highstand (crispa to lower ivochlupaci zones) to mixed calciturbidites/coarse-grained bioclastic limestones (falling-stage systems tract, upper ivochlupaci to lower klonkensis zones). The upper part of the succession consists of bioclastic limestones corresponding to a subtidal setting between storm-wave and fair-weather wave base (lowstand systems tract in upper klonkensis and hesperius-optima zones). This interpretation corresponds to the late Silurian global sea-level pattern as recorded in other regions. Thus the depositional system is interpreted as mostly driven by eustasy with short-lived periods of influence from local tectonics.


Silurian Přídolí series Prague Syncline Gamma-ray spectrometry Carbonate microfacies Conodont biostratigraphy 



The authors are grateful to Leona Chadimová (Institute of Geology, Academy of Sciences) for valuable discussion. Jiřina Dašková and Jan Dašek (National Museum) are highly appreciated for their help during fieldwork. We gratefully acknowledge Michal Mergl and one anonymous reviewer for their constructive comments which improved the manuscript significantly. We also thank Axel Munnecke and Maurice Tucker for careful editorial handling. This paper was financially supported by project DKRVO 2018/03 (National Museum, 00023272) of the Ministry of Culture to FV. It was also supported by the Czech Science Foundation (project GA17-06700S “Přídolí Series in the Prague Synform—proposal for chronostratigraphic subdivision”) and the Research Plan of the Institute of Geology of the Czech Academy of Sciences (RVO67985831) to LS and Polish Geological Institute - National Research Institute project No. 61.3608.1102.00.0 to KS. It contributes to IGCP 652: Reading time in Paleozoic sedimentary rocks.


  1. Andrew AS, Hamilton PJ, Mawson R, Talent JA, Whitford DJ (1994) Isotopic correlation tools in the mid-Paleozoic and their relation to extinction events. Aust Pet Explor Assoc J 34:268–277Google Scholar
  2. Azmy K, Veizer J, Wenzel B, Bassett MG, Copper P (1999) Silurian strontium isotope stratigraphy. Geol Soc Am Bull 111:475–483CrossRefGoogle Scholar
  3. Bábek O, Kalvoda J, Cossey P, Šimíček D, Devuyst FX, Hargreaves S (2013) Facies and petrophysical signature of the Tournaisian/Viséan (lower Carboniferous) sea-level cycle in carbonate ramp to basinal settings of the Wales–Brabant massif, British Isles. Sediment Geol 284–285:197–213CrossRefGoogle Scholar
  4. Bábek O, Faměra M, Hladil J, Kapusta J, Weinerová H, Šimíček D, Slavík L, Ďurišová J (2018a) Origin of red pelagic carbonates as an interplay of global climate and local basin factors: insight from the Lower Devonian of the Prague Basin, Czech Republic. Sediment Geol 364:71–88CrossRefGoogle Scholar
  5. Bábek O, Faměra M, Šimíček D, Weinerová H, Hladil J, Kalvoda J (2018b) Sea-level changes vs. organic productivity as controls on early and Middle Devonian bioevents: facies and gamma-ray based sequence-stratigraphic correlation of the Prague Basin, Czech Republic. Glob Planet Change 160:75–95CrossRefGoogle Scholar
  6. Barnett SG (1972) The evolution of Spathognathodus remscheidensis in New York, New Jersey, Nevada, and Czechoslovakia. J Paleontol 46:900–917Google Scholar
  7. Bassett MG (1985) Towards a “common language” in stratigraphy. Episodes 8:87–92Google Scholar
  8. Berkyová S, Munnecke A (2010) “Calcispheres” as a source of lime mud and peloids—evidence from the early Middle Devonian of the Prague Basin, the Czech Republic. Bull Geosci 85:585–602CrossRefGoogle Scholar
  9. Brett CE, Ferretti A, Histon K, Schönlaub HP (2009) Silurian sequence stratigraphy of the Carnic Alps, Austria. Palaeogeogr Palaeoclimatol Palaeoecol 279:1–28CrossRefGoogle Scholar
  10. Buggisch W, Mann U (2004) Carbon isotope stratigraphy of Lochkovian to Eifelian limestones from the Devonian of central and southern Europe. Int J Earth Sci 93:521–541Google Scholar
  11. Čáp P, Vacek F, Vorel T (2003) Microfacies analysis of Silurian and Devonian type sections (Barrandian, Czech Republic). Czech Geolo Surv Spec Pap 15:1–40Google Scholar
  12. Carls P, Slavík L (2005) Upgrading of magnetic susceptibility of conodont sample residues before magnetic separation. Lethaia 38:171–172CrossRefGoogle Scholar
  13. Carls P, Slavík L, Valenzuela-Ríos JI (2005) A new Ludlow (late Silurian) spathognathodontidae (Conodonta) from Bohemia with incipient alternating denticulation. Neues Jahrb Geol Palaeontol Monatshefte 9:547–565Google Scholar
  14. Carls P, Slavík L, Valenzuela-Ríos JI (2007) Revisions of conodont biostratigraphy across the Silurian–Devonian boundary. Bull Geosci 82:145–164CrossRefGoogle Scholar
  15. Catuneanu O, Abreu V, Bhattacharya JP, Blum MD, Dalrymple RW, Eriksson PG, Fielding CR, Fisher WL, Galloway WE, Gibling MR, Giles KA, Holbrook JM, Jordan R, Kendall CGStC, Macurda B, Martinsen OJ, Miall AD, Neal JE, Nummedal D, Pomar L, Posamentier HW, Pratt BR, Sarg JF, Shanley KW, Steel RJ, Strasser A, Tucker ME, Winker C (2009) Towards the standardization of sequence stratigraphy. Earth Sci Rev 92:1–33CrossRefGoogle Scholar
  16. Chadimova L, Vacek F, Sobien K, Slavik L, Hladil J (2015) Petrophysical record of the Late Silurian shallow-water carbonate facies across the Lau Event (Prague Synform, Czech Republic) and dynamic time warping alignment of the magnetic susceptibility logs. In: Da Silva AC, Whalen MT, Hladil J, Chadimova L, Chen D, Spassov S, Boulvain F, Devleeschouwer X (eds) Magnetic susceptibility application: a window onto ancient environments and climatic variations. Geol Soc Spec Publ 414, London, pp 133–155Google Scholar
  17. Chlupáč I, Kukal Z (1988) Possible global events and the stratigraphy of the Barrandian Paleozoic (Cambrian–Devonian, Czechoslovakia). Sbor Geol Věd Geol 43:83–146Google Scholar
  18. Chlupáč I, Jaeger H, Zikmundová J (1972) The Silurian–Devonian boundary in the Barrandian. Bull Canad Petrol Geol 20:104–174Google Scholar
  19. Chlupáč I, Kříž J, Schönlaub HP (1980) Silurian and Devonian conodont localities of the Barrandian. In: Schönlaub HP (ed) Guidebook and abstracts, second European conodont symposium—ECOS II, vol 30. Abhgand Geol Bundesanst, Wien, pp 147–180Google Scholar
  20. Chlupáč I, Hladil J, Lukeš P (1986) Field conference of the ISDS Barrandian–Moravian karst. A Field Trip Guide Book, PrahaGoogle Scholar
  21. Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Paleozoic of the Barrandian (Cambrian–Devonian). Czech Geological Survey, PrahaGoogle Scholar
  22. Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204 (updated) Google Scholar
  23. Corradini C, Corriga MG (2012) A Přídolí–Lochkovian conodont zonation in Sardinia and the Carnic Alps: implications for a global zonation scheme. Bull Geosci 87:635–650CrossRefGoogle Scholar
  24. Crick RE, Ellwood BB, Hladil J, El Hassani A, Hrouda F, Chlupáč I (2001) Magnetostratigraphy susceptibility of the Přídolian–Lochkovian (Silurian–Devonian) GSSP (Klonk, Czech Republic) and a coeval sequence in Anti-Atlas Morocco. Palaeogeogr Palaeoclimatol Palaeoecol 167:73–100CrossRefGoogle Scholar
  25. Durrance EM (1986) Radioactivity in geology: principles and applications. Ellis Horwood, ChichesterGoogle Scholar
  26. Fiala F (1970) Silurian and Devonian diabases of the Barrandian Basin. J Geol Sci Geol 17:7–71 (in Czech) Google Scholar
  27. Fiala F (1971) Ordovician diabase volcanism and biotite lamprophyres of the Barrandian. J Geol Sci Geol 19:7–97 (in Czech) Google Scholar
  28. Friedman GM (1962) On sorting, sorting coefficients, and the lognormality of the grainsize distribution of sandstones. J Geol 70:737–753CrossRefGoogle Scholar
  29. Frýda J, Hladil J, Vokurka K (2002) Seawater strontium isotope curve at the Silurian/Devonian boundary: a study of the global Silurian/Devonian boundary stratotype. Geobios 35:21–28CrossRefGoogle Scholar
  30. Gocke M, Lehnert O, Frýda J (2013) Facies development across the Late Silurian Lau Event based on temperate carbonates of the Prague Basin (Czech Republic). Facies 59:611–630CrossRefGoogle Scholar
  31. Gradstein FM, Ogg JG, Schmitz MD, Ogg G (2012) The geologic time scale 2012. Elsevier, OxfordGoogle Scholar
  32. Hajná J, Žák J, Kachlík V, Chadima M (2010) Subduction-driven shortening and differential exhumation in a Cadomian accretionary wedge: the Teplá-Barrandian unit, Bohemian Massif. Precambrian Res 176:27–45CrossRefGoogle Scholar
  33. Hajná J, Žák J, Kachlík V, Chadima M (2012) Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá-Barrandian unit, Bohemian Massif. Int J Earth Sci 101:1855–1873CrossRefGoogle Scholar
  34. Haq BU, Schutter SR (2008) A chronology of Paleozoic sea-level changes. Science 322:64–68CrossRefGoogle Scholar
  35. Havlíček V, Štorch P (1990) Silurian brachiopods and benthic communities in the Prague Basin (Czechoslovakia). Rozpr Ústř Úst geol 48:1–275Google Scholar
  36. Hladíková J, Hladil J, Kříbek B (1997) Carbon and oxygen isotope record across Pridoli to Givetian stage boundaries in the Barrandian basin (Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol 132:225–241CrossRefGoogle Scholar
  37. Hladil J (1991) Evaluation of the sedimentary record in the Silurian/Devonian boundary stratotype at Klonk (Barrandian area, Czechoslovakia). Newslett Stratigr 25:115–125CrossRefGoogle Scholar
  38. Hladil J (1992) Are there turbidites in the Silurian/Devonian boundary stratotype? (Klonk near Suchomasty, Barrandian, Czechoslovakia). Facies 26:35–54CrossRefGoogle Scholar
  39. Hunt D, Tucker ME (1992) Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sediment Geol 81:1–9CrossRefGoogle Scholar
  40. Jeppsson L (1988) Conodont biostratigraphy of the Silurian–Devonian boundary stratotype at Klonk, Czechoslovakia. Geol et Palaeont 22:21–31Google Scholar
  41. Jeppsson L, Aldridge RJ (2000) Ludlow (late Silurian) oceanic episodes and events. J Geol Soc Lond 157:1137–1148CrossRefGoogle Scholar
  42. Jeppsson L, Viira V, Männik P (1994) Silurian conodont-based correlations between Gotland (Sweden) and Saaremaa (Estonia). Geol Mag 131:201–218CrossRefGoogle Scholar
  43. Johnson ME (1996) Stable cratonic sequences and a standard for Silurian eustasy. In: Witzke BJ, Ludvigson GA, Day J (eds) Paleozoic sequence stratigraphy: views from the North American Craton, vol 306. Geol S Am S, Boulder, pp 203–211CrossRefGoogle Scholar
  44. Johnson ME (2006) Relationship of Silurian sea-level fluctuations to oceanic episodes and events. GFF 128:115–121CrossRefGoogle Scholar
  45. Johnson ME (2010) Tracking Silurian eustasy: alignment of empirical evidence or pursuit of deductive reasoning? Palaeogeogr Palaeoclimatol Palaeoecol 296:276–284CrossRefGoogle Scholar
  46. Kaljo D, Martma T, Grytsenko V, Brazauskas A, Kaminskas D (2012) Přídolí carbon isotope trend and upper Silurian to lowermost Devonian chemostratigraphy based on sections in Podolia (Ukraine) and the East Baltic area. Est J Earth Sci 61:162–180CrossRefGoogle Scholar
  47. Koptíková L, Bábek O, Hladil J, Kalvoda J, Slavík L (2010a) Stratigraphic significance and resolution of spectral reflectance logs in Lower Devonian carbonates of the Barrandian area, Czech Republic; a correlation with magnetic susceptibility and gamma-ray logs. Sediment Geol 225:83–98CrossRefGoogle Scholar
  48. Koptíková L, Hladil J, Slavík L, Čejchan P, Babek O (2010b) Fine-grained non-carbonate particles embedded in neritic to pelagic limestones (Lochkovian to Emsian, Prague Syncline, Czech Republic): composition, provenance and links to magnetic susceptibility and gamma-ray logs. Geol Belg 13:407–430Google Scholar
  49. Kříž J (1975) Revision of the lower Silurian stratigraphy in central Bohemia. Věst Ústř Úst Geol 50:275–282Google Scholar
  50. Kříž J (1992) Silurian field excursions. Prague Basin (Barrandian), Bohemia. Nat Mus Wales Geolo Ser 13:1–111Google Scholar
  51. Kříž J, Jaeger H, Paris F, Schönlaub HP (1986) Přídolí—the fourth subdivision of the Silurian. Jahrb Geol Bundesanst 129:291–360Google Scholar
  52. Lehnert O, Frýda J, Buggisch W, Munnecke A, Nützel A, Kříž J, Manda Š (2007) δ13C records across the Late Silurian Lau Event: new data from middle palaeo-latitudes of northern peri-Gondwana (Prague Basin, Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol 245:227–244CrossRefGoogle Scholar
  53. Malkowski K, Racki G, Drygant D, Szaniawski H (2009) Carbon isotope stratigraphy across the Silurian–Devonian transition in Podolia, Ukraine: evidence for a global biogeochemical perturbation. Geol Mag 146:674–689CrossRefGoogle Scholar
  54. Manda Š, Frýda J (2010) Silurian–Devonian boundary events and their influence on cephalopod evolution: evolutionary significance of cephalopod egg size during mass extinctions. Bull Geosci 85:513–540CrossRefGoogle Scholar
  55. Manda Š, Kříž J (2006) Environmental and biotic changes of the subtropical isolated carbonate platforms during Kozlowskii and Lau Events (Prague Basin, Silurian, Ludlow). GFF 128:161–168CrossRefGoogle Scholar
  56. Mann U, Herten U, Kranendonck O, Poelchau HS, Stroetmann J, Vos H, Wilkes H, Suchý V, Brocke R, Wilde V, Muller A, Ebert J, Bozdogan N, Soylu C, El Hassani A, Yalcin MN (2001) Dynamics of the Silurian/Devonian boundary sequence: sedimentary cycles vs. organic matter variation. Terra Nostra 4:44–48Google Scholar
  57. Mehrtens CJ, Barnett SG (1976) Conodont subspecies from the Upper Silurian–Lower Devonian of Czechoslovakia. Micropaleontology 22:491–500CrossRefGoogle Scholar
  58. Melichar R (2004) Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum 30:167–187Google Scholar
  59. Morávek R (2008) Late Ludlovian Chitinozoa from the locality “Na Požárech” (Silurian, Prague Basin, Barrandian area, Czech Republic). Rev Paleobot Palyno 148:124–135CrossRefGoogle Scholar
  60. Munnecke A, Calner M, Harper DAT, Servais T (2010) Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. Palaeogeogr Palaeoclimatol Palaeoecol 296:389–413CrossRefGoogle Scholar
  61. Rider MH (2002) The geological interpretation of well logs, 2nd edn. Rider-French Consulting Ltd., SutherlandGoogle Scholar
  62. Röhlich P (2007) Structure of the Prague basin: the deformation diversity and its causes (Czech Republic). Bull Geosci 82:175–182CrossRefGoogle Scholar
  63. Saltzman MR (2002) Carbon isotope (δ 13C) stratigraphy across the Silurian–Devonian transition in North America: evidence for a perturbation of the global carbon cycle. Palaeogeogr Palaeoclimatol Palaeoecol 187:83–100CrossRefGoogle Scholar
  64. Schönlaub HP, Kreutzer LH, Joachimski MM, Buggisch W (1994) Paleozoic boundary sections of the Carnic Alps (southern Austria). Erlanger Geol Abh 122:77–103Google Scholar
  65. Slavík L (2004a) The Pragian–Emsian conodont successions of the Barrandian area: search of an alternative to the GSSP polygnathid-based correlation concept. Geobios 37(4):454–470CrossRefGoogle Scholar
  66. Slavík L (2004b) A new conodont zonation of the Pragian in the stratotype area (Barrandian, central Bohemia). Newsl Stratigr 40:39–71CrossRefGoogle Scholar
  67. Slavík L (2011) Lanea carlsi conodont apparatus reconstruction and its significance for subdivision of the Lochkovian. Acta Palaeontol Pol 56:313–327CrossRefGoogle Scholar
  68. Slavík L, Carls P (2012) Post-Lau Event (late Ludfordian, Silurian) recovery of conodont faunas of Bohemia. Bull Geosci 87:815–832CrossRefGoogle Scholar
  69. Slavík L, Valenzuela-Ríos JI, Hladil J, Carls P (2007) Early Pragian conodont-based correlations between the Barrandian area and the Spanish central Pyrenees. Geol J 42:499–512CrossRefGoogle Scholar
  70. Slavík L, Kříž J, Carls P (2010) Reflection of the mid-Ludfordian Lau Event in conodont faunas of Bohemia. Bull Geosci 85:395–414CrossRefGoogle Scholar
  71. Slavík L, Carls P, Murphy MA (2011) The Přídolí series in the Barrandian—prospects and constraints for biozonation by conodonts. Programme and abstracts, meeting of the subcommission on Silurian stratigraphy—Siluria revisited, Ludlow, England, 10–15 July 2011Google Scholar
  72. Slavík L, Carls P, Hladil J, Koptíková L (2012) Subdivision of the Lochkovian stage based on conodont faunas from the stratotype area (Prague Syncline, Czech Republic). Geol J 47:616–631CrossRefGoogle Scholar
  73. Slavík L, Štorch P, Manda Š, Frýda J (2014) Integrated stratigraphy of the Ludfordian in the Prague Synform. GFF 136(1):238–242CrossRefGoogle Scholar
  74. Spengler AE, Read JF (2010) Sequence development on a sediment-starved, low accommodation epeiric carbonate ramp: Silurian Wabash Platform, USA mid-continent during icehouse to greenhouse transition. Sediment Geol 224:84–115CrossRefGoogle Scholar
  75. Štorch P, Manda Š, Loydell DK (2014) The early Ludfordian leintwardinensis graptolite event and the Gorstian–Ludfordian boundary in Bohemia (Silurian, Czech Republic). Palaeontology 57:1003–1043CrossRefGoogle Scholar
  76. Tasáryová Z, Janoušek V, Frýda J (2017) Failed Silurian continental rifting at the NW margin of Gondwana: evidence from basaltic volcanism of the Prague Basin (Teplá-Barrandian unit, Bohemian Massif). Int J Earth Sci 107:1231–1266CrossRefGoogle Scholar
  77. Trotter JA, Williams IS, Barnes CS, Männik P, Simpson A (2016) New conodont δ18O records of Silurian climate change: implications for environmental and biological events. Palaeogeogr Palaeoclimatol Palaeoecol 443:34–48CrossRefGoogle Scholar
  78. Vacek F (2007) Carbonate microfacies and depositional environments of the Silurian–Devonian boundary strata in the Barrandian area (Czech Republic). Geol Carpath 58:497–510Google Scholar
  79. Vacek F (2011) Palaeoclimatic event at the Lochkovian–Pragian boundary recorded in magnetic susceptibility and gamma-ray spectrometry (Prague Synclinorium, Czech Republic). Bull Geosci 86:259–268CrossRefGoogle Scholar
  80. Vacek F, Čáp P (2010) Magnetic susceptibility stratigraphic record of the Požáry formation in the Požáry 1 quarry near Praha–Řeporyje (Ludlow to Lochkovian; Prague Basin). Geosci Res Rep 2009:65–67Google Scholar
  81. Vacek F, Žák J (2017) A lifetime of the Variscan orogenic plateau from uplift to collapse as recorded by the Prague Basin. Bohemian Massif. Geol Mag. CrossRefGoogle Scholar
  82. Vacek F, Hladil J, Schnabl P (2010) Stratigraphic correlation potential of magnetic susceptibility and gamma-ray spectrometric variations in calciturbiditic facies mosaics (Silurian–Devonian boundary, Barrandian area, Czech Republic). Geol Carpath 61:257–272CrossRefGoogle Scholar
  83. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  84. Vodrážková S, Frýda J, Suttner TJ, Koptíková L, Tonarová P (2013) Environmental changes close to the Lower–Middle Devonian boundary; the Basal Choteč event in the Prague Basin (Czech Republic). Facies 59:425–449CrossRefGoogle Scholar
  85. Weinerová H, Hron K, Bábek O, Šimíček D, Hladil J (2017) Quantitative allochem compositional analysis of Lochkovian–Pragian boundary sections in the Prague Basin (Czech Republic). Sediment Geol 354:43–59CrossRefGoogle Scholar
  86. Žigaitė Ž, Joachimski MM, Lehnert O, Brazauskas A (2010) δ18O composition of conodont apatite indicates climatic cooling during the middle Pridoli. Palaeogeogr Palaeoclimatol Palaeoecol 294:242–247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National MuseumPraha 1Czech Republic
  2. 2.The Czech Academy of Sciences, Institute of GeologyPraha 6Czech Republic
  3. 3.Polish Geological Institute - National Research InstituteWarsawPoland
  4. 4.Czech Geological SurveyPraha 1Czech Republic

Personalised recommendations