Advertisement

Facies

, 64:26 | Cite as

Microproblematica, calcareous algae, and microbialites at the Frasnian-Famennian boundary interval in the Šumbera section (Moravian Karst, Czech Republic) and their significance in the context of the Kellwasser Crisis

  • Tomáš Weiner
  • Hedvika Weinerová
  • Jiří Kalvoda
Original Article
  • 104 Downloads

Abstract

The Kellwasser Crisis represents one of the most severe extinction events in the Phanerozoic. The Šumbera section (Moravo-Silesian Basin, Moravian Karst) spans the Upper rhenana to Palmatolepis minuta minuta (or younger) conodont zones and corresponds to the upper part of a carbonate ramp with material derived from shallower areas. A rich association of calcareous algae, cyanobacteria, and microproblematica, comprising renalcids (Izhella), Girvanella, Rectangulina cf. tortuosa, Rothpletzella, “solenoporaceans”, “Keega”-like microfossils, udoteacean alga Paralitanaia, volvocean and radiospherid calcispheres, palaeoberesellids, Umbellina bella, and Wetheredella, is similar in diversity to associations known from China, Australia, Canada, and Belgium. The Šumbera section represents a unique locality where changes in shallow-water biota at the Frasnian-Famennian boundary are well calibrated by detailed conodont biostratigraphy. We track in detail the evolution of shallow-water biota and the features that are often discussed in the context of “anachronistic” facies, such as flourishing microbial structures, enhanced early marine cementation, and flat-pebble conglomerates. Some features which could be indicative of environmental stress such as flat-pebble conglomerates developed during the Frasnian part of the Kellwasser Crisis (Upper rhenana to linguiformis Zones), whereas a renalcid boom started at the Frasnian-Famennian boundary.

Keywords

Frasnian-Famennian boundary Kellwasser Crisis Microbialites Microproblematica Calcareous algae Moravian Karst 

Notes

Acknowledgements

Noemi Mészárosová and Radek Škoda are thanked for the preparation of the SEM micrographs. Thanks are due to Jindřich Hladil for his valuable comments, and Tomáš Viktorýn for his kind help in the field. Reviewers Markus Aretz and Emilia Jarochowska are thanked for their helpful suggestions. The research was financed by the Czech Science Foundation (14-18183S, 16-11563S) and was conducted within institutional support RVO 67985831 of the Institute of Geology of the Czech Academy of Sciences.

Supplementary material

10347_2018_538_MOESM1_ESM.xls (29 kb)
Supplementary material 1 (XLS 120 kb)
10347_2018_538_MOESM2_ESM.xls (120 kb)
Supplementary material 2 (XLS 29 kb)

References

  1. Antoshkina AI (1998) Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia. Sed Geol 118(1–4):187–211.  https://doi.org/10.1016/S0037-0738(98)00012-8 CrossRefGoogle Scholar
  2. Antoshkina AI (2006) Palaeoenvironmental implications of Palaeomicrocodium in Upper Devonian microbial mounds of the Chernyshev Swell, Timan-northern Ural Region. Facies 52(4):611–625.  https://doi.org/10.1007/s10347-006-0083-z CrossRefGoogle Scholar
  3. Aretz M, Chevalier E (2007) After the collapse of stromatoporoid–coral reefs—the Famennian and Dinantian reefs of Belgium: much more than Waulsortian mounds. In: Álvaro JJ, Aretz M, Boulvain F, Munnecke A, Vachard D, Vennnin E (eds) Palaeozoic reefs and bioaccumulations: climatic and evolutionary controls. Geol Soc London Spec Publ 275:pp 163–188Google Scholar
  4. Bábek O, Přikryl T, Hladil J (2007) Progressive drowning of carbonate platform in the Moravo-Silesian Basin (Czech Republic) before the Frasnian/Famennian event: facies, compositional variations and gamma-ray spectrometry. Facies 53(2):293–316.  https://doi.org/10.1007/s10347-006-0095-8 CrossRefGoogle Scholar
  5. Bond DPG, Zatoń M, Wignall PB, Marynowski L (2013) Evidence for shallow-water “Upper Kellwasser” anoxia in the Frasnian–Famennian reefs of Alberta, Canada. Lethaia 46:355–368CrossRefGoogle Scholar
  6. Bornemann JG (1886) Die Versteinerungen des Cambrischen Schichten-Systems der Insel Sardinien, nebst vergleichenden Untersuchungen über analoge Vorkomnisse aus andern Ländern. Erst Abt Ksl Leop-Carol Deut Akad Naturforsch 51:1–147Google Scholar
  7. Bourque P-A, Mamet B, Roux A (1981) Algues siluriennes du synclinorium de la Baie des Chaleurs, Québec, Canada. Rev Micropaléont 24(2):83–126Google Scholar
  8. Brett CE, McLaughlin PI, Histon K, Schindler E, Ferretti A (2012) Time-specific aspects of facies: state of the art, examples, and possible causes. Palaeogeogr Palaeoclimatol Palaeoecol 367–368:6–18.  https://doi.org/10.1016/j.palaeo.2012.10.009 CrossRefGoogle Scholar
  9. Buriánek D, Gilíková H, Nehyba S, Otava J (2007) Depositional environment and provenance of Lower Palaeozoic clastics in the Měnín-1 borehole SSE of Brno. Geol Výzk Mor Slez v roce 2006 14:46–47 (in Czech) Google Scholar
  10. Chuvashov BI (1965) Foraminifera and calcareous algae from the Upper Devonian of the western slope of the central and southern Urals. Akad. Nauk SSSR Geol Inst Trudy 74:8–153Google Scholar
  11. Chuvashov B, Riding R (1984) Principal floras of Palaeozoic marine calcareous algae. Palaeontology 27(3):487–500Google Scholar
  12. Copper P (2002) Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeogr Palaeoclimatol Palaeoecol 181(1–3):27–65.  https://doi.org/10.1016/S0031-0182(01)00472-2 CrossRefGoogle Scholar
  13. Doweld AB (2014) (2285–2286) Proposals to conserve the names Umbellina against Umbella and Umbellinaceae against Umbellaceae (fossil Charophyta. Taxon 63(2):441–442.  https://doi.org/10.12705/632.38 CrossRefGoogle Scholar
  14. Dricot E, Tsien HH (1977) Le nom du genre Rothpletzella Wood 1948 (algue calcaire paléozoïque) est légitime et correct. Mémoir de l’Institut Géologique, Université de Louvain 29:231–240Google Scholar
  15. Du YS, Gong YM, Zeng XW, Huang HW, Yang JH, Zhang Z, Huang ZQ (2008) Devonian Frasnian–Famennian transitional event deposits of Guangxi, south China and their possible tsunami origin. Sci China Ser D-Earth Sci 51(11):1570–1580CrossRefGoogle Scholar
  16. Edgell HS (2003) Upper Devonian Charophyta of western Australia. Micropaleontology 49(4):359–374.  https://doi.org/10.1661/0026-2803(2003)049[0359:udcowa]2.0.co;2
  17. Feist M, Liu J, Tafforeau P (2005) New insights into Palaeozoic charophyte morphology and phylogeny. Am J Bot 92(7):1152–1160.  https://doi.org/10.3732/ajb.92.7.1152 CrossRefGoogle Scholar
  18. Feng Q, Gong Y-M, Riding R (2010) Mid-Late Devonian calcified marine algae and cyanobacteria, South China. J Paleontol 84(4):569–587.  https://doi.org/10.1017/S0022336000058340 CrossRefGoogle Scholar
  19. Gereke M (2007) Die oberdevonische Kellwasser-Krise in der Beckenfazies von Rhenoherzynikum und Saxothuringikum (spätes Frasnium/frühestes Famennium, Deutschland). Kölner Forum Geol Paläont 17:1–228Google Scholar
  20. Gereke M, Schindler E (2012) “Time-specific facies” and biological crises—The Kellwasser Event interval near the Frasnian/Famennian boundary (Late Devonian). Palaeogeogr Palaeoclimatol Palaeoecol 367–368:19–29.  https://doi.org/10.1016/j.palaeo.2011.11.024 CrossRefGoogle Scholar
  21. Granier B, Dias-Brito D (2016) On the fossil alga Marinella lugeoni PFENDER, 1939, nom. cons., and its seven unfortunate avatars. Revision of the Juliette PFENDER Collection. Part 2. Revision of the Jesse Harlan JOHNSON Collection. Part 2. Carnets Geol 16(7):231–245Google Scholar
  22. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, New YorkGoogle Scholar
  23. He L, Wang Y, Woods A, Li G, Yang H, Liau W (2012) Calcareous tubeworms as disaster forms after the end-Permian mass extinction in South China. Palaios 27(12):878–886.  https://doi.org/10.2110/palo.2012.p12-022r CrossRefGoogle Scholar
  24. Héroux Y, Hubert C, Mamet B, Roux A (1977) Algues siluriennes de la Formation de Sayabec (Lac Matapédia, Québec). J Can Sci Terre 14(12):2865–2908CrossRefGoogle Scholar
  25. Hladil J (1983) Cyklická sedimentace v devonských karbonátech macošského souvrství. Zemní plyn a nafta XXVIII(1):1–14Google Scholar
  26. Hladil J, Kalvoda J (1993) Devonian boundary intervals of Bohemia and Moravia especially the Eifelian/Givetian and Frasnian/Famennian events with respect to the Silurian/Devonian and Devonian/Carboniferous boundaries. In: Narkiewicz M (ed) Global boundary events. Excursion guidebook, Warszawa, pp 29–75Google Scholar
  27. Hladil J, Krejci Z, Kalvoda J, Ginter M, Galle A, Berousek P (1991) Carbonate ramp environment of Kellwasser time-interval; Lesni lom, Moravia, Czechoslovakia. Bull de la Soc Belge de Géol 100(1–2):57–119Google Scholar
  28. Hladil J, Melichar R, Otava J, Galle A, Krs M, Man O, Pruner P, Cejchan P, Orel P (1999) The Devonian in the easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. Abh Geol B-A Vienna 54:27–47Google Scholar
  29. Huang C, Gong Y (2016) Timing and patterns of the Frasnian–Famennian Event: evidence from high-resolution conodont biostratigraphy and event stratigraphy at the Yangdi section, Guangxi, South China. Palaeogeogr Palaeoclimatol Palaeoecol 448:317–338.  https://doi.org/10.1016/j.palaeo.2015.10.031 CrossRefGoogle Scholar
  30. Jarochowska E, Munnecke A (2014) The Paleozoic problematica Wetheredella and Allonema are two aspects of the same organism. Facies 60(2):651–662.  https://doi.org/10.1007/s10347-014-0399-z CrossRefGoogle Scholar
  31. Jarochowska E, Hierl F, Vinn O, Munnecke A (2016) Reducing taxonomic noise in problematic fossils: revision of the incertae sedis genus Allonema based on shape analysis. Bull Geosci 91(1):97–110.  https://doi.org/10.3140/bull.geosci.1588 CrossRefGoogle Scholar
  32. Kalvoda J, Bábek O (2010) The Margins of Laurussia in Central and Southeast Europe and Southwest Asia. Gondwana Res 17(2–3):526–545.  https://doi.org/10.1016/j.gr.2009.09.012 CrossRefGoogle Scholar
  33. Kalvoda J, Melichar R, Bábek O, Leichmann J (2002) Late Proterozoic–Paleozoic tectonostratigraphic development and paleogeography of Brunovistulian Terrance and comparison with other terranes at the SE Margins of Baltica-Laurussia. J Czech Geol Soc 47(3–4):81–102Google Scholar
  34. Kalvoda J, Leichmann J, Bábek O, Melichar R (2003) Brunovistulian Terrane (Central Europe) and Istanbul Zone (NW Turkey): Late Proterozoic and Paleozoic tectonostratigraphic development and paleogeography. Geol Carpath 54(3):139–152Google Scholar
  35. Kaźmierczak J (1975) Colonial volvocales (Chlorophyta) from the Upper Devonian of Poland and their palaeoenvironmental significance. Acta Palaeont Pol 20(1):73–85Google Scholar
  36. Kaźmierczak J (1976) Volvocean nature of some Palaeozoic non-radiosphaerid calcispheres and parathuramminid “foraminifera”. Acta Palaeont Pol 21(3):245–258Google Scholar
  37. Kaźmierczak J (1981) The biology and evolutionary significance of Devonian volvoceans and their Precambrian relatives. Acta Palaeont Pol 26(3–4):299–337Google Scholar
  38. Kaźmierczak J, Kremer B (2005) Early post-mortem calcified Devonian acritarchs as a source of calcispheric structures. Facies 51(1):573–584.  https://doi.org/10.1007/s10347-005-0071-8 CrossRefGoogle Scholar
  39. Kendall AC (1985) Radiaxial fibrous calcite: a reappraisal. In: Schneidermann N, Harris PM (eds) Carbonate cements. Society of economic paleontologists and mineralogists, Special Publication No. 36, Tulsa, Oklahoma pp 59–77.  https://doi.org/10.2110/pec.85.36.0059
  40. Kershaw S, Crasquin S, Collin P-Y, Li Y, Feng Q, Forel M-B (2009) Microbialites as disaster forms in anachrnonistic facies following the end-Permian mass extinction: a discussion. Aust J Earth Sci 56:809–813CrossRefGoogle Scholar
  41. Kershaw S, Crasquin S, Li Y, Collin P-Y, Forel M-B, Mu X, Baud A, Wang Y, Xie S, Maurer F, Guo L (2012) Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10(1):25–47.  https://doi.org/10.1111/j.1472-4669.2011.00302.x CrossRefGoogle Scholar
  42. Lighty RG (1985) Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene Barrier reef, southeast Florida Shelf, 123–151. In: Schneidermann N, Harris PM (eds) Carbonate cements. Society of economic paleontologists and mineralogists, Special Publication No. 36, Tulsa, Oklahoma.  https://doi.org/10.2110/pec.85.36.0123
  43. Luchinina VA (2009) Remalcis and Epiphyton as different stages in the life cycle of Calcareous Algae. Paleontol J 43(4):463–468.  https://doi.org/10.1134/S0031030109040169 CrossRefGoogle Scholar
  44. Mamet BL (1970) Sur les Ubellaceae. Can J Earth Sci 7(4):1164–1171CrossRefGoogle Scholar
  45. Mamet BL (1971) Sur le Genre Umbellina Loeblich et Tappan. Can J Earth Sci 8(1):174–175.  https://doi.org/10.1139/e71-015 CrossRefGoogle Scholar
  46. Mamet BL (1991) Carboniferous calcareous algae. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 370–451CrossRefGoogle Scholar
  47. Mamet B, Boulvain F (1992) Microflore des monticules micritiques frasniens «F2j» de Belgique. Rev Micropaléont 35(4):283–302Google Scholar
  48. Mamet B, Preat A (2013) Essai de description d’algues nouvelles paléozoïques. Geol Belg 16(1–2):35–48Google Scholar
  49. Mamet B, Roux A (1975) Algues dévoniennes et carbonifères de la Téthys occidentale. Troisième partie. Rev Micropaléont 18(3):134–187Google Scholar
  50. Mamet B, Roux A (1983) Algues dévono-carbonifères de l’Australie. Rev Micropaléont 26(2):63–131Google Scholar
  51. Mamet B, Preat A, Lehmami M (1999) Algues calcaires marines du dévonien Marocain (Meseta) Devonian marine carbonate algae of Morocco (Meseta). Rev Micropaléont 42(4):301–314CrossRefGoogle Scholar
  52. Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10(1):3–24.  https://doi.org/10.1111/j.1472-4669.2011.00305.x CrossRefGoogle Scholar
  53. May A (1992) Die Kalkalgen-Flora des Ober-Eifeliums und Unter-Givetiums (Devon) des nordwestlichen Sauerlandes (Rheinisches Schiefergebirge). Palaeontogr Abt B 228(1–6):1–28Google Scholar
  54. Morrow J (2000) Shelf-to-basin lithofacies and conodont paleoecology across Frasnian–Famennian (F–F, mid-Late Devonian) boundary, central Great Basin (Western USA). Cour Forsch Inst Senckenberg 219:1–57Google Scholar
  55. Mottequin B, Poty E (2015) Kellwasser horizons, sea-level changes and brachiopod-coral crises during the Late Frasnian in the Namur Dinant Basin (southern Belgium): a synopsis. In: Becker RT, Königshof P, Brett CE (eds) Devonian Climate, Sea Level and Evolutionary Events. Geol Soc London Spec Pub 423: 235–250.  https://doi.org/10.1144/sp423.6
  56. Playford PE (1967) Devonian reef complexes in the northern Canning Basin 351–364. In: Oswald DH (ed) International symposium in the Devonian system, Calgary 1967, vol II. Alberta Society of petroleum geologists, Calgary, AlbertaGoogle Scholar
  57. Poty E, Denayer J, Mottequin B (2014) Tsunamis triggered the Late Frasnian Kellwasser extinction event, 598. In: Cerdeño (ed) The history of life: a view from the southern hemisphere. Abstract volume of the 4th International Palaeontological Congress, CCT-CONICET, Mendoza, Argentina. International Palaeontological Association, Lawrence, KS, Sep 28–Oct 3Google Scholar
  58. Pratt BR (1984) Epiphyton and Renalcis—diagenetic microfossils from calcification of coccoid blue-green algae. J Sediment Petrol 54(3):948–971.  https://doi.org/10.1306/212F853F-2B24-11D7-8648000102C1865D CrossRefGoogle Scholar
  59. Racki G (1998) The Frasnian–Famennian brachiopod extinction events: a preliminary review. Acta Palaeontol Polonica 43(2):395–411Google Scholar
  60. Racki G, Racka M, Matyja H, Devleeschouwer X (2002) The Frasnian/Famennian boundary interval in the south Polish-Moravian shelf basins: integrated event-stratigraphical approach. Palaeogeogr Palaeoclimatol Palaeoecol 181(1–3):251–297.  https://doi.org/10.1016/S0031-0182(01)00481-3 CrossRefGoogle Scholar
  61. Rakociński M, Racki G (2016) Microbialites in the shallow-water marine environments of the Holy Cross Mountains (Poland) in the aftermath of the Frasnian–Famennian biotic crisis. Glob Planet Chang 136(1):30–40.  https://doi.org/10.1016/j.gloplacha.2015.12.001 CrossRefGoogle Scholar
  62. Riding R (1974) The Devonian genus Keega (Algae) reinterpreted an a stromatoporoid basal layer. Palaeontology 17(4):565–577Google Scholar
  63. Riding R (1977) Problems of affinity in Palaeozoic calcareous algae, 202–2011. In: Flügel E (ed) Fossil algae, recent results and developments. Springer, Berlin Heidelberg New York.  https://doi.org/10.1007/978-3-642-66516-5_21
  64. Riding R (1991) Calcified cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 55–87CrossRefGoogle Scholar
  65. Roux A (1991) Ordovician to Devonian marine Calcareous algae. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 349–369CrossRefGoogle Scholar
  66. Sandberg CA, Ziegler W, Dreesen R, Butler JL (1988) Late Frasnian mass extinction: conodont event stratigraphy, global changes, and possible causes. Cour Forsch Inst Senckenberg 102:263–307Google Scholar
  67. Schindler E (1990) The Late Frasnian (Upper Devonian) Kellwasser Crisis. Lect Notes Earth Sci 30:151–159.  https://doi.org/10.1007/BFb0011143 CrossRefGoogle Scholar
  68. Schindler E (1993) Event-stratigraphical markers within the Kellwasser Crisis near the Frasnian/Famennian boundary (Upper Devonian) in Germany. Palaeogeogr Palaeoclimatol Palaeoecol 104:115–125.  https://doi.org/10.1016/0031-0182(93)90124-2 CrossRefGoogle Scholar
  69. Schroeder JH (1972) Calcified filaments of an endolithic alga in Recent Bermuda reefs. Neues Jb Geol Paläont Mh 1:16–33Google Scholar
  70. Schülke I (1995) Evolutive Prozesse bei Palmatolepis in der frühen Famenne-Stufe (Conodonta, Oberdevon). Gott Arb Geol Und Palaont 67:1–108Google Scholar
  71. Schülke I (1998) Conodont community around the “Kellwasser mass extinction event” (Frasnian/Famennian boundary interval). Senck leth 77(1–2):87–99.  https://doi.org/10.1007/BF03043736 CrossRefGoogle Scholar
  72. Sepkoski JJ Jr (1982) Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna, 371–386. In: Einsele G, Seilacher A (eds) Cyclic and Event Stratification. Springer, Berlin.  https://doi.org/10.1007/978-3-642-75829-4_28
  73. Sepkoski JJ Jr, Bambach RK, Droser ML (1991) Secular changes in Phanerozoic event bedding and the biological overprint. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 298–312Google Scholar
  74. Shen J, Webb GE (2004a) Famennian (Upper Devonian) calcimicrobial (Renalcis) reef at Miaomen, Guilin, Guangxi, South China. Palaeogeogr Palaeoclimatol Palaeoecol 204(3–4):373–394.  https://doi.org/10.1016/S0031-0182(03)00737-5 CrossRefGoogle Scholar
  75. Shen J, Webb GE (2004b) Famennian (Upper Devonian) stromatolite reefs at Shatang, Guilin, Guangxi, South China. Sediment Geol 170(1–2):63–84.  https://doi.org/10.1016/j.sedgeo.2004.06.004 CrossRefGoogle Scholar
  76. Shen J, Yu C, Bao H (1997) A Late-Devonian (Famennian) Renalcis-Epiphyton Reef at Zhaijiang, Guilin, South China. Facies 37(1):195–210.  https://doi.org/10.1007/BF02537379 CrossRefGoogle Scholar
  77. Shen J, Webb GE, Jell JS (2008) Platform margins, reef facies, and microbial carbonates; a comparison of Devonian reef complexes in the Canning Basin, Western Australia, and the Guilin region, South China. Earth Sci Rev 88(1–2):33–59.  https://doi.org/10.1016/j.earscirev.2008.01.002 CrossRefGoogle Scholar
  78. Shen J, Webb GE, Qing H (2010) Microbial mounds prior to the Frasnian–Famennian mass extinctions, Hantang, Guilin, South China. Sedimentology 57(7):1615–1639.  https://doi.org/10.1111/j.1365-3091.2010.01158.x CrossRefGoogle Scholar
  79. Skompski S (1986) Upper Viséan calcareous algae from the Lublin Coal Basin. Acta geol Pol 36(1–3):251–280Google Scholar
  80. Skompski S (1987) The dasycladacean nature of Late Palaeozoic palaeoberesellid algae. Acta Geol Pol 37(1–2):21–31Google Scholar
  81. Smutná S (1995) Ichthyolity svrchního devonu v jižní části Moravského krasu. Master thesis, Katedra geologie a paleontologie Přírodovědecké fakulty Masarykovy Univerzity pp 1–50Google Scholar
  82. Smutná S (1996) Rybí fauna svrchního devonu a spodního karbonu na Moravě. Geol Výzk Mor Slez V Roce 1995 2:122–127Google Scholar
  83. Spalletta C, Perri MC, Over DJ, Corradini C (2017) Famennian (Upper Devonian) conodont zonation: revised global standard. Bull Geosci 92(1):31–57.  https://doi.org/10.3140/bull.geosci.1623 CrossRefGoogle Scholar
  84. Stephens NP, Sumner DY (2002) Renalcids as fossilized biofilm clusters. Palaios 17(3):225–236. https://doi.org/10.1669/0883-1351(2002)017<0225:rafbc>2.0.co;2Google Scholar
  85. Stephens NP, Sumner DY (2003) Famennian microbial reef facies, Napier and Oscar Ranges, Canning Basin, western Australia. Sedimentology 50(6):1283–1302.  https://doi.org/10.1046/j.1365-3091.2003.00605.x CrossRefGoogle Scholar
  86. Streitová M (1994) Hranice frasnu a famenu mezi Hády a Šumberovou skálou v jižní části moravského krasu. Geol výzk Mor Slez v roce 1993 1:65–66Google Scholar
  87. Taylor TN, Taylor EN, Krings M (2009) Paleobotany: the biology and evolution of fossil plants., 2nd edn. Elsevier, AmsterdamGoogle Scholar
  88. Toomey DF, Mountjoy EW, MacKenzie W (1970) Upper Devonian (Frasnian) algae and foraminifera from the Ancient Wall carbonate complex, Jasper National Park, Alberta, Canada. Can J Eart Sci 7(3):946–981.  https://doi.org/10.1139/e70-090 CrossRefGoogle Scholar
  89. Tsien HH (1979) Paleoecology of algal-bearing facies in the Devonian (Couvinian to Frasnian) reef complexes of Belgium. Palaeogeogr Palaeoclimatol Palaeoecol 27:103–127.  https://doi.org/10.1016/0031-0182(79)90096-8 CrossRefGoogle Scholar
  90. Tsien HH, Dricot E (1977) Devonian Calcareous algae from the Dinant and Namur Basins, Belgium. In: Flügel E (ed) Fossil algae. Springer, Berlin, pp 344–350.  https://doi.org/10.1007/978-3-642-66516-5_35 CrossRefGoogle Scholar
  91. Vachard D (2000) On some umbellinids (carbonate microproblematica) from the Frasnian (Late Devonian) of Chah Riseh area (Central Iran). Ann Soc Géol du Nord 8:75–80Google Scholar
  92. Vachard D, Cózar P (2010) An attempt of classification of the Palaeozoic incertae sedis Algospongia. Rev Esp de Micropaleont 42(2):129–241Google Scholar
  93. Vachard D, Cózar P, Aretz M, Izart A (2016) Late Viséan–early Serpukhovian cyanobacteria and algae from the Montagne Noire (France); taxonomy and biostratigraphy. Bull Geosci 91(3):433–466.  https://doi.org/10.3140/bull.geosci.1613 CrossRefGoogle Scholar
  94. Walliser OH (1996) Global events in the Devonian and Carboniferous. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 225–250CrossRefGoogle Scholar
  95. Webb GE (1996) Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43:947–971CrossRefGoogle Scholar
  96. Weiner T, Kalvoda J, Kumpan T, Schindler E, Šimíček D (2017) An integrated stratigraphy of the Frasnian–Famennian boundary interval (Late Devonian) in the Moravian Karst (Czech Republic) and Kellerwald (Germany). Bull Geosci 92(2):257–281.  https://doi.org/10.3140/bull.geosci.1636 CrossRefGoogle Scholar
  97. Weinerová H, Weiner T, Hladil J (2017) Rostroconchs from Devonian sediments of the Moravo-Silesian Basin. Geosci Res Rep 50:153–157.  https://doi.org/10.3140/zpravy.geol.2017.16 (in Czech) CrossRefGoogle Scholar
  98. Whalen MT, Day J, Eberli GP, Homewood PW (2002) Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta basin, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 181(1–3):127–151.  https://doi.org/10.1016/S0031-0182(01)00476-X CrossRefGoogle Scholar
  99. Wood A (1948) “Sphaerocodium”, a misinterpreted fossil from the Wenlock Limestone. Geol Assoc Proc 59(9):9–22CrossRefGoogle Scholar
  100. Wood R (2000a) Palaeoecology of a Late Devonian back-reef: Canning Basin, Western Australia. Paleontology 43(4):671–703.  https://doi.org/10.1111/1475-4983.00145 CrossRefGoogle Scholar
  101. Wood R (2000b) Novel paleoecology of a postextinction reef: Famennian (Late Devonian) of the Canning basin, northwestern Australia. Geology 28(11):987–990. https://doi.org/10.1130/0091-7613(2000)28<987:npoapr>2.0.co;2Google Scholar
  102. Wood R (2004) Palaeoecology of a post-extinction reef: Famennian (Late Devonian) of the Canning Basin, north-western Australia. Paleontology 47(2):415–445.  https://doi.org/10.1111/j.0031-0239.2004.00373.x CrossRefGoogle Scholar
  103. Woods AD (2014) Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features. Earth Sci Rev 137:6–18.  https://doi.org/10.1016/j.earscirev.2013.08.015 CrossRefGoogle Scholar
  104. Wray JL (1967a) Upper Devonian calcareous algae from the Canning Basin, Western Australia. Prof Contrib Col Sch Mines 3:1–76Google Scholar
  105. Wray JL (1967b) Upper Devonian algae from Western Australia. In: Oswald DH (ed) International symposium in the Devonian System, Calgary 1967, vol II. Alberta Society of Petroleum Geologists, Calgary, Alberta, pp 849–854Google Scholar
  106. Wray JL (1972) Environmental distribution of calcareous algae in Upper Devonian reef complexes. Geol Rundsch 61(2):578–584.  https://doi.org/10.1007/BF01896335 CrossRefGoogle Scholar
  107. Wray JL (1977) Developments in paleontology and stratigraphy, 4. Calcareous algae. Elsevier, New YorkGoogle Scholar
  108. Wray JL, Playford PE (1970) Some occurrences of Devonian reef-building algae in Alberta. Bull Can Petrol Geol 18(4):544–555Google Scholar
  109. Wright VP, Cherns L (2015) Leaving no stone unturned: the feedback between increased biotic diversity and early diagenesis during the Ordovician. J Geol Soc London 174(5):241–244.  https://doi.org/10.6084/M9.FIGSHARE.3454148 CrossRefGoogle Scholar
  110. Yao L, Aretz M, Chen J, Webb GE, Wang X (2016) Global microbial carbonate proliferation after the end-Devonian mass extinction: mainly controlled by demise of skeletal bioconstructors. Sci Rep 6(39694):1–9Google Scholar
  111. Zatoń M, Krawczyński W (2011) Microconchid tubeworms across the Upper Frasnian–Lower Famennain interval in the Central Devonian field. Russia. Paleontology 54(6):1455–1473.  https://doi.org/10.1111/j.1475-4983.2011.01110.x CrossRefGoogle Scholar
  112. Zatoń M, Zhuravlev A, Rakociński M, Filipiak P, Borszcz T, Krawcyński Wilson MA, Sokiran EV (2014) Microconchid-dominated cobbles from the Upper Devonian of Russia: Opportunism and dominance in a restricted environment following the Frasnian–Famennian biotic crisis. Palaeogeogr Palaeoclimat Palaeoecol 401:142–153.  https://doi.org/10.1016/j.palaeo.2014.02.029 CrossRefGoogle Scholar
  113. Zatoń M, Borszcz T, Rakociński M (2017) Temporal dynamics of encrusting communities during the Late Devonian: a case study from the Central Devonian Field. Russia. Paleobiology 43(4):550–568.  https://doi.org/10.1017/pab.2017.8 CrossRefGoogle Scholar
  114. Ziegler W, Sandberg CA (1990) The Late Devonian standard conodont zonation. Cour Forsch-Inst Senck 121:1–115Google Scholar
  115. Zukalová V, Chlupáč I (1982) Stratigrafická klasifikace nemetamorfovaného devonu moravskoslezské oblasti. Časopis pro mineralogii a geologii 27(3):225–241Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tomáš Weiner
    • 1
    • 2
  • Hedvika Weinerová
    • 1
    • 2
  • Jiří Kalvoda
    • 1
  1. 1.Department of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.The Czech Academy of Sciences, Institute of GeologyPrague 6Czech Republic

Personalised recommendations