, 64:25 | Cite as

Rocky-shore unconformities marking the base of Badenian (Middle Miocene) transgressions on Mt. Medvednica basement (North Croatian Basin, Central Paratethys)

  • Mihovil Brlek
  • Ljiljana Iveša
  • Vlatko Brčić
  • Ana Santos
  • Stjepan Ćorić
  • Monika Milošević
  • Radovan Avanić
  • Massimo Devescovi
  • Đurđica Pezelj
  • Ivan Mišur
  • Mirjana Miknić
Original Article


Badenian (Middle Miocene) transgressive deepening-upward successions located in the NE part of Mt. Medvednica (North Croatian Basin, Pannonian Basin System) unconformably overlie Mesozoic basement. Triassic and Upper Cretaceous limestone pebbles, cobbles, and boulders of the Badenian basal conglomerates display abundant in situ bivalve borings of Gastrochaenolites and sponge borings of Entobia. This Gastrochaenolites-Entobia ichnoassemblage is related to the Entobia subichnofacies of the Trypanites ichnofacies, characterizing littoral rocky-shore environments (wave-cut platforms and marine transgressive surfaces with a low or null rate of sedimentation). Gastrochaenolites torpedo, Gastrochaenolites lapidicus, and Entobia recorded in Badenian basal conglomerates (compared with modern Northern Adriatic rocky-shore environments), enabled more precise palaeoenvironmental interpretations. The occurrence of G. torpedo (produced by lithophaginid bivalves) on all sides of individual limestone lithoclasts in the Gornje Orešje basal conglomerate, coupled with truncation of the formation (possibly indicating multiphase colonization), reflect gravel transport, roll-over, overturning and erosion by wave action in high-energy rocky-shore settings. Gornje Psarjevo-2 basal conglomerate boulders were probably not subjected to significant movement and abrasion, as suggested by good preservation of both G. lapidicus (potentially produced by gastrochaenid bivalves), associated G. torpedo, as well as abundant shallow Entobia borings. The Badenian Gastrochaenolites-Entobia ichnoassemblage also could be the result of a composite development. However, direct cross-cutting relationships between G. torpedo and G. lapidicus and/or Entobia were rarely observed. In addition, Badenian boring tracemakers might have coexisted at the same water depth. Northeast Mt. Medvednica Badenian successions probably formed during different Central Paratethys transgressive pulses (NN5 and NN6 Zones). However, exact timing of Badenian transgressions, stratigraphic correlations and tectono-eustatic implications are unresolved, due to sparsely integrated biostratigraphic and high-precision geochronological studies of Early–Middle Miocene North Croatian Basin deposits and due to the absence of a uniform biostratigraphic zonation and regional chronostratigraphic division of Central Paratethys.


Gastrochaenolites-Entobia ichnoassemblage Trypanites ichnofacies Rocky shore Badenian North Croatian Basin Central Paratethys 



This study is dedicated to Hrvoje Posilović. The study was supported by the project “Basic Geological Map of the Republic of Croatia” of the Ministry of Science, Education and Sports of the Republic of Croatia. Ana Santos also acknowledges support by Junta de Andalucía to the Research Group RNM 276, and by CGL2015-66835-P (Secretaría de Estado de I+D+i, Spain Government). We would like to thank Professors Markes E. Johnson and Mario Cachão for their very helpful comments and suggestions that improved the manuscript. Thanks to Facies Editor-in-Chief Professor Maurice Tucker for his helpful comments and editorial work. We would also like to thank SCUBA divers from the Ruđer Bošković Institute (Center for Marine Research, Rovinj), Mirko Belak and Valentina Hajek-Tadesse for constructive stratigraphic discussions, Vlasta Ćosović for early manuscript suggestions, Croatian Geological Survey Lab team for thin-section preparation, and Nikola Belić for technical support.


  1. Abdul Aziz H, Di Stefano A, Foresi LM, Hilgen FJ, Iaccarino SM, Kuiper KF, Lirer F, Salvatorini G, Turco E (2008) Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg42A, Site 372 (Western Mediterranean). Palaeogeogr Palaeoclimatol Palaeoecol 257:123–138Google Scholar
  2. Avanić (2012) Litostratigrafske jedninice donjeg miocena sjeverozapadne Hrvatske. Dissertation, University of Zagreb, Zagreb, p 162Google Scholar
  3. Avanić R, Kovačić M, Pavelić D, Miknić M, Vrsaljko D, Bakrač K, Galović I (2003) The Middle and Upper Miocene Facies of Mt. Medvednica (Northern Croatia). In: Vlahović I, Tišljar J (eds) Evolution of Depositional Environments from the Paleozoic to the Quaternary in the Karst Dinarides and the Pannonian Basin. 22nd IAS Meeting of Sedimentology, Field Trip Guidebook, pp 167–172Google Scholar
  4. Baarli BG, Santos AG, Mayoral EJ, Ledesma-Vásquez J, Johnson ME, da Silva CM, Cachão M (2013) What Darwin did not see: Pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands. Geol Mag 150:183–189Google Scholar
  5. Babić Lj, Zupanič J (2000) Borings in mobile clasts from Eocene conglomerates of northern Dalmatia (coastal Dinarides, Croatia). Facies 42:51–58Google Scholar
  6. Basch O (1983a) Basic geological map 1:100.000. Sheet Ivanić-Grad. Inst. Geol. Istraž., Zagreb—Sav. Geol. zavod BeogradGoogle Scholar
  7. Basch O (1983b) Basic geological map 1:100.000. Sheet Ivanić-Grad, explanatory notes. Inst. Geol. Istraž., Zagreb‒Sav. Geol. zavod Beograd, p 66Google Scholar
  8. Belaústegui Z, de Gibert JM, Nebelsich JH, Domènech R, Martinell J (2013) Clypeasteroid echinoid tests as benthic islands for gastrochaenid bivalve colonization: evidence from the Middle Miocene of Tarragona, north-east Spain. Paleontology 56:783–796Google Scholar
  9. Bošnjak M, Sremac J, Vrsaljko D, Aščić Š, Bosak L (2017) The Miocene “Pteropod event” in the SW part of the Central Paratethys (Medvednica Mt., northern Croatia). Geol Carpath 68:329–349Google Scholar
  10. Brlek M, Korbar T, Košir A, Glumac B, Grizelj A, Otoničar B (2014) Discontinuity surfaces in Upper Cretaceous to Paleogene carbonates of central Dalmatia (Croatia): Glossifungites ichnofacies, biogenic calcretes and stratigraphic implications. Facies 60:467–487Google Scholar
  11. Brlek M, Špišić M, Brčić V, Mišur I, Kurečić T, Miknić M, Avanić R, Vrsaljko D, Slovenec D (2016) Mid-Miocene (Badenian) transgression on Mesozoic basement rocks in the Mt. Medvednica area of Northern Croatia. Facies 62:18. Google Scholar
  12. Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The palaeobiology of trace fossils. Wiley, Chichester, pp 134–154Google Scholar
  13. Bromley RG, Asgaard U (1993) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2:93–116Google Scholar
  14. Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Riv It Paleont Strat 90:16–29Google Scholar
  15. Bromley RG, D’Alessandro A (1987) Bioerosion of the Plio-Pleistocene transgression of southern Italy. Riv It Paleont Strat 93:39–49Google Scholar
  16. Bromley RG, D’Alessandro A (1989) Ichnological study of shallow-marine endolithic sponges from the Italian coast. Riv It Paleont Strat 95:279–314Google Scholar
  17. Bromley RG, Kędzierski M, Kolodziej B, Uchman A (2009) Large chambered sponge borings on a Late Cretaceous abrasion platform at Cracow, Poland. Cretac Res 30:149–160Google Scholar
  18. Cachão M, da Silva CM, Santos A, Domènech R, Martinell J, Mayoral E (2009) The bioeroded megasurface of Oura (Algarve, south Portugal): implications for the Neogene stratigraphy and tectonic evolution of southwest Iberia. Facies 55:213–225Google Scholar
  19. Cachão M, Redweik P, Barreira E, Dinis J, Catita C, da Silva CM, Santos A, Mayoral E, Linder W (2010) Photogrammetric and spatial analysis of a bioeroded Early Miocene rocky shore, western Portugal. Facies 57:417–429Google Scholar
  20. Calcinati B, Bavestrello G, Cuttone G, Cerrano C (2011) Excavating sponges from the Adriatic Sea: description of Cliona adriatica sp. nov. (Demospongiae: Clionaidae) and estimation of its boring activity. J Mar Biol Assoc U.K. 91(2):339–346Google Scholar
  21. Carter JG, McDowell T, Namboodiri N (2008) The identity of Gastrochaena cuneiformis Spengler, 1783, and the evolution of Gastrochaena, Rocellaria, and Lamychaena (Mollusca, Bivalvia, Gastrochaenoidea). J Paleontol 82:102–117Google Scholar
  22. Ćorić S, Pavelić D, Rögl F, Mandić O, Vrabac S, Avanić R, Jerković L, Vranjković A (2009) Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin Systems, Central Paratethys). Geol Croat 62:31–43Google Scholar
  23. Dávid Á (2010) Macrobioerosion on Early-Miocene (Karpatian) Pebbles; Dédestapolcsány, Hungary. ACTA GGM DEBRECINA Geol Geomorphol Phys Geogr Ser 4–5:53–56Google Scholar
  24. de Gibert JM, Martinell J, Domènech R (1998) Entobia ichnofacies in fossil rocky shores, Lower Pliocene, northwestern Mediterranean. Palaios 13:476–487Google Scholar
  25. de Gibert JM, Domènech R, Martinell J (2012) Rocky shorelines. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developm Sediment 64:441–462Google Scholar
  26. de Leeuw A, Bukowski K, Krijgsman W, Kuiper K (2010) Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology 38:715–718Google Scholar
  27. de Leeuw A, Mandić O, Krijgsman W, Kuiper K, Hrvatović H (2012) Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides. Tectonophysics 530–531:286–298Google Scholar
  28. de Leeuw A, Filipescu S, Maţenco l, Krijgsman W, Kuiper K, Stoica M (2013) Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): implications for Central Paratethys stratigraphy and emplacement of the Tisza-Dacia plate. Global Planet Chang 103:82–98Google Scholar
  29. Devescovi M (2009) Biometric differences between date mussels Lithophaga lithophaga colonizing artificial and natural structures. Acta Adriat 50:129–138Google Scholar
  30. Devescovi M, Iveša Lj (2008) Colonization patterns of the date mussel Lithophaga lithophaga (L., 1758) on limestone breakwater boulders of a marina. Period Biol 110:339–345Google Scholar
  31. Devescovi M, Ozretić B, Lj Iveša (2005) Impact of date mussel harvesting on the rocky bottom structural complexity along the Istrian coast (Northern Adriatic, Croatia). J Exp Mar Biol Ecol 325:134–145Google Scholar
  32. Di Stefano A, Foresi LM, Lirer F, Iaccarino SM, Turco E, Amore FO, Mazzei R, Morabito S, Salvatorini G, Aziz HA (2008) Calcareous plankton high-resolution bio-magnetostratigraphy for the Langhian of the Mediterranean area. Riv Ital Paleontol Stratigr 114:51–76Google Scholar
  33. Di Stefano A, Baldassini N, Maniscalco R, Speranza F, Maffione M, Cascella A, Foresi LM (2015) New bio-magnetostratigraphic data on the Miocene Moria section (Northern Apennines, Italy): connections between the Mediterranean region and the North Atlantic Ocean. Newsl Stratigr. Google Scholar
  34. Domènech R, de Gibert JM, Martinell J (2001) Ichnological features of a marine transgression: middle Miocene rocky-shores of Tarragona, Spain. Geobios 34:99–107Google Scholar
  35. Donovan SK, Jagt JWM (2013) Aspects of clavate borings in the type Maastrichtian (Upper Cretaceous) of the Netherlands and Belgium. Neth J Geosci 92:133–143Google Scholar
  36. Doyle P, Bennett M, Cocks F (1998) Borings in a boulder substrate from the Miocene of southern Spain. Ichnos 5:277–286Google Scholar
  37. Felton EA (2002) Sedimentology of rocky shorelines: 1. A review of the problem, with analytical methods, and insights gained from the Hulopoe Gravel and the modern rocky shoreline of Lanai, Hawaii. Sediment Geol 152:221–245Google Scholar
  38. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer-Verlag, Berlin Heidelberg, p 472Google Scholar
  39. Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin, p 976Google Scholar
  40. Fodor R (ed) (2014) Field Trip Guide of the 8th International Bioerosion Workshop. Eszterházy Károly College, Hungary, p 48Google Scholar
  41. Foresi LM, Verducci M, Baldassini N, Lirer F, Mazzei R, Salvatorini G, Ferraro G, Da Prato S (2011) Integrated stratigraphy of St. Peter’s Pool section (Malta): new age for the Upper Globigerina Limestone member and progress towards the Langhian GSSP. Stratigraphy 8(2–3):125–143Google Scholar
  42. Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207Google Scholar
  43. Furlong CM, Schultz SK, Gingras MK, Zonneveld J-P (2016) Oregon Sea Stack: Ecological Diversity of a Modern Trypanites Ichnofacies. Ichnos 23:77–98Google Scholar
  44. GKRH (2009) Geološka karta Republike Hrvatske (Geological Map of the Republic of Croatia) scale 1:300.000. Hrvatski geološki institut (Croatian Geological Survey), Zagreb 1 sheet Google Scholar
  45. Hajek-Tadesse V, Belak M, Sremac J, Vrsaljko D, Wacha L (2009) Early Miocene ostracods from the Sadovi section (Mt Požeška gora, Croatia). Geol Carpath 60:251–262Google Scholar
  46. Handler R, Ebner F, Neubauer F, Bojar A-V, Hermann S (2006) 40Ar/39Ar dating of Miocene tuffs from the Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carpath 57:483–494Google Scholar
  47. Harzhauser M, Piller W (2007) Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31Google Scholar
  48. Hilgen FJ, Lourens LJ, Van Dam JA (2012) The Neogene period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The Geologic Time Scale 2012. Elsevier, Amsterdam, pp 923–978Google Scholar
  49. Hohenegger J, Čorić S, Wagreich M (2014) Timing of the Middle Miocene Badenian stage of the Central Paratethys. Geol Carpat 65:55–66Google Scholar
  50. Holcová K (2017) Calcareous nannoplankton and foraminiferal response to global Oligocene and Miocene climatic oscillations: a case study from the Western Carpathian segment of the Central Paratethys. Geol Carpath 68:207–228Google Scholar
  51. Holcová K, Hrabovský J, Nehyba S, Hladilová Š, Doláková N, Demeny A (2015) The Langhian (Middle Badenian) carbonate production event in the Moravian part of the Carpathian Foredeep (Central Paratethys): a multiproxy record. Facies 61:1–26Google Scholar
  52. Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian Basin: constraints from the observational data. Geol Soc Mem 32:191–206Google Scholar
  53. Iaccarino SM, Di Stefano A, Foresi LM, Turco E, Al E (2011) High–resolution integrated stratigraphy of the upper Burdigalian–lower Langhian in the Mediterranean: the Langhian historical stratotype and new candidate sections for defining its GSSP. Stratigraphy 8:199–215Google Scholar
  54. Johnson ME (1988a) Why are ancient rocky shores so uncommon? J Geol 96:469–480Google Scholar
  55. Johnson ME (1988b) Hunting for ancient rocky shores. J Geol Educ 36:147–154Google Scholar
  56. Johnson ME (1992) Studies on ancient rocky shores: a brief history and annotated bibliography. J Coast Res 8:797–812Google Scholar
  57. Johnson ME (2006) Uniformitarianism as a guide to rocky-shore ecosystems in the geologic record. Can J Earth Sci 43:1119–1147Google Scholar
  58. Johnson ME, Baarli BG (2012) Development of intertidal biotas through Phanerozoic time. In: Talent JA (ed) Earth and Life. International Year of Planet Earth, Springer Science+Business Media B.V., pp 63–128Google Scholar
  59. Johnson ME, Ledesma-Vásquez J, Clark HC, Zwiebel JA (1996) Coastal evolution of Late Cretaceous and Pleistocene rocky shores: Pacific rim of Northern Baja California, Mexico. Geol Soc Am Bull 108:708–721Google Scholar
  60. Kelly SRA, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807Google Scholar
  61. Kleeman KH (1973a) Der Gesteinsabbau durch Átzmuscheln an Kalkküsten. Oecol 13:377–395Google Scholar
  62. Kleeman KH (1973b) Lithophaga lithophaga (L.) (Bivalvia) in different limestone. Malacol 14:345–347Google Scholar
  63. Kleeman KH (1974) Beitrag zur Kenntnis des Verhaltens von Lithophaga lithophaga (L.) (Bivalvia) im Bohrloch. Sitz Ber Österr Akad Math naturwiss 182:201–210Google Scholar
  64. Kleeman KH (1982) Ätzmuscheln im Ghetto? Litbophaga (Bivalvia) aus dem Leithakalk (Mittel-Miozän: Badenien) von Müllendorf im Viener Becken, Osterreich. Beitr Paläontol Österreich 9:211–231Google Scholar
  65. Kleeman KH (1983) Catalogue of recent and fossil Lithophaga (Bivalvia). J Moll Stud Suppl 12 l-46Google Scholar
  66. Kleeman KH (1994) Associations of Corals and Boring Bivalves since the Late Cretaceous. Facies 31:131–140Google Scholar
  67. Kochansky V (1944) Miozäne marine Fauna des südlichen Abhanges der Medvednica, Zagreber Gebirge [Fauna marinskog miocena južnog pobočja Medvednice (Zagrebačke gore)]. Geol. vjesnik Hrv. drž. geol. zav. Hrv. drž. geol. muz. 2/3:171‒280Google Scholar
  68. Kováč M, Andreyeva-Grigorovich A, Bajraktarević Z, Brzobohatý R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelić D, Rögl F, Saftić B, Sliva Ľ, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol Carpath 58:579–606Google Scholar
  69. Kováč M, Hudáčková N, Kováčová N, Holcová K, Oszczypko-Clowes M, Báldi K, Less G, Nagymarosy A, Ruman A, Kluičar T, Jamrich M (2017) The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca 9:75–114Google Scholar
  70. Kovacs M, Seghedi I, Yamamoto M, Fülöp A, Pécskay Z, Jurje M (2017) Miocene volcanism in the Oaş-Gutâi Volcanic Zone, Eastern Carpathians, Romania: relationship to geodynamic processes in the Transcarpathian Basin. Lithos 294–295:304–318Google Scholar
  71. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500–504Google Scholar
  72. Lukács R, Harangi S, Guillong M, Bachmann O, Fodor L, Buret Y, Dunkl I, Sliwinski J, von Quadt A, Peytcheva I, Zimmerer M (2018) Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth Sci Rev 179:1–19Google Scholar
  73. Mandić O, de Leeuw A, Bulić J, Kuiper KF, Krijgsman W, Jurišić-Polšak V (2012) Palaeogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of northern Croatia. Int J Earth Sci (Geol Rundsch) 101:1033–1046Google Scholar
  74. Marković F (2017) Miocene tuffs of the North Croatian Basin. Dissertation University of Zagreb, Zagreb, p 170Google Scholar
  75. Martini E (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A (ed) Proceedings II Planktonic Conference, Rome, 2, 739‒785Google Scholar
  76. Martinuš M, Fio K, Pikelj K, Aščić Š (2013) Middle Miocene warm-temperate carbonates of Central Paratethys (Mt. Zrinska Gora, Croatia): paleoenvironmental reconstruction based on bryozoans, coralline red algae, foraminifera, and calcareous nannoplankton. Facies 59:481–504Google Scholar
  77. Matenco L, Radivojević D (2012) On the formation and evolution of the Pannonian Basin: constraints derived from the structure of the junction area between the Carpathians and Dinarides. Tectonics. 31:TC6007. Google Scholar
  78. McKinney FM (ed) (2007) The Northern Adriatic Ecosystem. Columbia University Press, New York City, p 299Google Scholar
  79. Moro A, Horvat A, Tomić V, Sremac J, Bermanec V (2016) Facies development and paleoecology of rudists and corals: an example of Campanian transgressive sediments from northern Croatia, northeastern Slovenia, and northwestern Bosnia. Facies 62:19. Google Scholar
  80. Morton B, Peharda M, Petrić M (2011) Functional morphology of Rocellaria dubia (Bivalvia:Gastrochaenidae) with new interpretations of crypt formation and adventitious tube construction, and a discussion of evolution within the family. Biol J Lin Soc 104:786–804Google Scholar
  81. Neubauer TA, Harzhauser M, Kroh A, Georgopoulou E, Mandić O (2015) A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth Sci Rev 143:98–116Google Scholar
  82. Pamić J (1997) Volcanic rocks of the Sava–Drava interfluve and Baranja in Croatia. Monograph, Nafta, Zagreb, 192 p (in Croatian)Google Scholar
  83. Pamić J, McKee EH, Bullen T, Lanphere M (1995) Tertiary volcanic rocks from the Southern Pannonian Basin. Int Geol Rev 37:259–283Google Scholar
  84. Pavelić D (2001) Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res 13:359–376Google Scholar
  85. Pavelić D (2005) Cyclicity in the evolution of the Neogene North Croatian Basin (Pannonian Basin System). In: Mabesoone JM, Neumann VH (eds) Cyclic development of sedimentary basins. Developm Sediment 57:273—283Google Scholar
  86. Pavelić D, Kovačić M (2018) Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): a review. Mar Pet Geol 91:455–469Google Scholar
  87. Pavelić D, Miknić M, Sarkotić Šlat M (1998) Early to Middle Miocene facies succession in lacustrine and marine environments of the southwestern margin of the Pannonian Basin System (Croatia). Geol Carpath 49:433–443Google Scholar
  88. Pavelić D, Avanić R, Kovačić M, Vrsaljko D, Miknić M (2003) An outline of the evolution of the Croatian part of the Pannonian Basin System. In: Vlahović I, Tišljar J (eds) Evolution of depositional environments from the Palaeozoic to the quaternary in the Karst Dinarides and the Pannonian Basin. 22nd IAS meeting of sedimentology. Field Trip Guidebook. Institute of Geology, Zagreb, pp 155–161Google Scholar
  89. Pécskay Z, Lexa J, Szakás A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpathica 57:511–530Google Scholar
  90. Peharda M, Puljas S, Chauvaud L, Schöne BR, Ezgeta-Balić D, Thébault J (2015) Growth and longevity of Lithophaga lithophaga: what can we learn from shell structure and stable isotope composition? Mar Biol 162:1531–1540Google Scholar
  91. Pérès JM, Gamulin-Brida H (1973) Biološka oceanografija Bentos. Bentoska bionomija Jadranskog mora. Školska Knjiga, Zagreb, p 495Google Scholar
  92. Pezelj Đ, Sremac J, Bermanec V (2016) Shallow-water benthic foraminiferal assemblages and their response to the palaeoenvironmental changes—example from the Middle Miocene of Medvednica Mt. (Croatia, Central Paratethys). Geol Carpath 67:329–345Google Scholar
  93. Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168Google Scholar
  94. Rocholl A, Schaltegger U, Gilg HA, Wijbrans J, Böhme M (2017) The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene. Int J Earth Sci (Geol Rundsch). Google Scholar
  95. Rögl F (1996) Stratigraphic correlation of the Paratethys Oligocene and Miocene. Mitt Gesell Geol Bergb Österr 41:65–73Google Scholar
  96. Rögl F (1998) Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99:279–310Google Scholar
  97. Sant K, Palcu D, Mandić O, Krijgsman W (2017) Changing seas in the Early-Middle Miocene of Central Europe: a Mediterranean approach to Paratethyan stratigraphy. Terra Nova. Google Scholar
  98. Santos A, Mayoral E, da Silva CM, Cachão C, Domènech R, Martinell J (2008) Trace fossil assemblages on Miocene rocky shores of southern Iberia. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 431–450Google Scholar
  99. Santos A, Mayoral E, da Silva CM, Cachão M, Kullberg JC (2010) Trypanites ichnofacies: Palaeoenvironmental and tectonic implications. A case study from the Miocene disconformity at Foz da Fonte (Lower Tagus Basin, Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 292:35–43Google Scholar
  100. Santos A, Mayoral E, Bromley RG (2011) Bioerosive structures from Miocene marine mobile-substrate communities in southern Spain, and description of a new sponge boring. Palaeontology 54:535–545Google Scholar
  101. Schmid S, Bernoulli D, Fügenschuh B, Maţenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183Google Scholar
  102. Schmitz MD, Kuiper KF (2013) High-precision geochronology. Elements 9:25–30Google Scholar
  103. Seghedi I, Downes H (2011) Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian-Pannonian region. Gondwana Res 20:655–672Google Scholar
  104. Šegvić B, Mileusnić M, Aljinović D, Vranjković A, Mandić O, Pavelić D, Dragičević I, Mählmann RF (2014) Magmatic provenance and diagenesis of Miocene tuffs from the Dinaride Lake System (the Sinj Basin, Croatia). Eur J Mineral 26:83–101Google Scholar
  105. Šimunić An, Pikija M, Hećimović I, Šimunić Al (1981) Basic geological map 1:100.000. Sheet Varaždin, explanatory notes. Inst. Geol. Istraž., Zagreb—Sav. Geol. zavod Beograd, p 75Google Scholar
  106. Šimunić An, Pikija M, Hećimović I, Šimunić Al (1982) Basic geological map 1:100.000. Sheet Varaždin. Inst. Geol. Istraž., Zagreb—Sav. Geol. zavod BeogradGoogle Scholar
  107. Tomljenović B, Csontos L, Márton E, Márton P (2008) Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia. In: Fügenschuh B, Froitzheim N, Siegesmund S (eds) Tectonic Aspects of the Alpine-Dinaride-Carpathian System., vol 298. Geological Society, Special Publications, London, pp 145–167Google Scholar
  108. Turco E, Hüsing S, Hilgen F, Cascella A, Gennari R, Iaccarino SM, Sagnotti L (2016) Astronomical tuning of the La Vedova section between 16.3 and 15.0 Ma. Implications for the origin of megabeds and the Langhian GSSP. Newsl Stratigr. Google Scholar
  109. Uchman A, Kleeman K, Rattazzi B (2017) Macroborings, their tracemakers and nestlers in clasts of a fan delta: the Savignone Conglomerate (Lower Oligocene), Northern Apennines, Italy. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 283:35–51Google Scholar
  110. van Gelder IE, Matenco L, Willingshofer E, Tomljenović B, Andriessen PAM, Ducea MN, Beniest A, Gruić A (2015) The tectonic evolution of a critical segment of the Dinarides-Alps connection: Kinematic and geochronological inferences from the Medvednica Mountains. NE Croatia Tectonics. Google Scholar
  111. Vrsaljko D, Pavelić D, Miknić M, Brkić M, Kovačić M, Hećimović I, Hajek-Tadesse V, Avanić R, Kurtanjek N (2006) Middle Miocene (Upper Badenian/Sarmatian) palaeoecology and evolution of the environments in the area of Medvednica Mt. (North Croatia). Geol Croatica 59:51–63Google Scholar
  112. Wade BS, Pearson PN, Berggren WA, Pälike H (2011) Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci Rev 104:111–142Google Scholar
  113. Wotzlaw J-F, Hüsing SK, Hilgen FJ, Schaltegger U (2014) High-precision zircon U-Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene. Earth Planet Sci Lett 407:19–34Google Scholar
  114. Wotzlaw J-F, Bindeman IN, Stern RA, D’Abzac F-X, Schaltegger U (2015) Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Scientific Reports 5:14026. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mihovil Brlek
    • 1
  • Ljiljana Iveša
    • 2
  • Vlatko Brčić
    • 1
  • Ana Santos
    • 3
  • Stjepan Ćorić
    • 4
  • Monika Milošević
    • 1
  • Radovan Avanić
    • 1
  • Massimo Devescovi
    • 2
  • Đurđica Pezelj
    • 5
  • Ivan Mišur
    • 1
  • Mirjana Miknić
    • 1
  1. 1.Croatian Geological SurveyDepartment of GeologyZagrebCroatia
  2. 2.Ruđer Bošković InstituteCenter for Marine ResearchRovinjCroatia
  3. 3.CCTH, Science and Technology CentreUniversity of HuelvaHuelvaSpain
  4. 4.Geological Survey of AustriaViennaAustria
  5. 5.Department of Geology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations