, 63:11 | Cite as

Facies variability in mixed carbonate–siliciclastic platform slopes (Miocene)

  • Jesús ReolidEmail author
  • Christian Betzler
  • Victoria Singler
  • Christiane Stange
  • Sebastian Lindhorst
Original Paper


Miocene tropical carbonate platform slopes in southern Spain contain classical reef-slope facies distribution but also an unexpected abundance of serpulid-rich facies, locally forming build-ups. Two sections from the Miocene Sorbas and Níjar Basins were mapped and analyzed petrographically in order to identify the factors determining this facies variability. Reef-slope facies is intercalated with serpulid-rich facies and siliciclastic bodies. Serpulids are the pioneers colonizing the substrate in zones of quiet hydrodynamic conditions after hydrographical changes such as eventual river discharge. The interplay of sea-level changes and hydrographical conditions, together with episodic terrestrial influx, control lateral and along-slope facies variability as well as the facies distribution across the carbonate platform. Neither a deterministic distribution of facies belts nor a stochastic partitioning of facies in mosaics can accurately explain the facies distribution. A new model is proposed to explain facies variability in the context of intrinsic and extrinsic factors.


Build-ups Serpulids Facies belts Facies mosaics Encrusters Reef 



The authors wish to thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for financial support through the Grant Be 1272/21-1 (NEOCARPS). We also wish to thank Prof. Dr. José Manuel Martín for his insightful discussions concerning the Miocene carbonate platform slopes from Almería. The authors also thank the reviewers Prof. Dr. Juan Carlos Braga and Prof. Dr. James Nebelsick for their most valuable comments. Eva Vinx is thanked for producing the thin-sections, and JR thanks Dr. Matías Reolid for his valued support in the field and the lab.


  1. Adams EW, Schlager W, Wattel E (1998) Submarine slopes with an exponential curvature. Sediment Geol 117:135–141CrossRefGoogle Scholar
  2. Bosence DWJ (1973) Recent serpulid reefs, Connemara, Eire. Nature 242:40–41CrossRefGoogle Scholar
  3. Braga JC, Martín JM (1996) Geometries of reef advance in response to relative sea-level changes in a Messinian (uppermost Miocene) fringing reef (Cariatiz reef, Sorbas Basin, SE Spain). Sedimrnt Geol 107:61–81CrossRefGoogle Scholar
  4. Braga JC, Martín JM, Alcalá B (1990) Coral reefs in coarse-terrigenous sedimentary environments (Upper Tortonian, Granada Basin, southern Spain). Sediment Geol 66:135–150CrossRefGoogle Scholar
  5. Braga JC, Martín JM, Riding R (1996) Internal structure of segment reefs: Halimeda algal mounds in the Mediterranean Miocene. Geology 24:35–38CrossRefGoogle Scholar
  6. Braga JC, Martín JM, Quesada C (2003) Patterns and average rates of late Neogene—recent uplift of the Betic Cordillera, SE Spain. Geomorphology 50:3–26CrossRefGoogle Scholar
  7. Climaco A, Boni M, Iannace A, Zamparelli V (1997) Platform margins, microbial/serpulids bioconstructions and slope-to-basin sediments in the Upper Triassic of the “Verbicaro Unit” (Lucania and Calabria, Southern Italy). Facies 36:37–56CrossRefGoogle Scholar
  8. Cuevas-Castell JM, Betzler C, Rössler J, Hüssner H, Peinl M (2007) Integrating outcrop data and forward computer modelling to unravel the development of a Messinian carbonate platform in SE Spain (Sorbas Basin). Sedimentology 54:423–441CrossRefGoogle Scholar
  9. Dabrio CJ, Esteban M, Martín JM (1981) The coral reef of Níjar, Messinian (uppermost Miocene), Almería Province, SE Spain. J Sediment Petrol 51:521–539Google Scholar
  10. Dabrio CJ, Martín JM, Megías AG (1985) The tectosedimentary evolution of Mio-Pliocene reefs in the province of Almería (SE Spain). In: Milá MD, Rosell J (eds) Sixth European regional meeting of the international association of sedimentologists. Excursion guidebook, Lleida, Spain, pp 269–305Google Scholar
  11. Esteban M (1980) Significance of the Upper Miocene coral reefs of the western Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 29:169–188CrossRefGoogle Scholar
  12. Esteban M (1996) An overview of Miocene reefs from Mediterranean areas: general trends and facies models. Models carbonate stratigraphy Miocene reef complexes of Mediterranean regions. SEPM Concepts Sedimentol Paleontol 5:3–53Google Scholar
  13. Fornós JJ, Forteza V, Martínez-Taberner A (1997) Modern polychaete reefs in western Mediterranean lagoons: Ficopomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic Islands. Palaeogeogr Palaeoclimatol Palaeoecol 128:175–186CrossRefGoogle Scholar
  14. Franseen EK, Goldstein RH (1996) Paleoslope, sea-level and climate controls on upper Miocene platform evolution, Las Negras area, southeastern Spain. Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions. SEPM Concepts Sedimentol Paleontol 5:159–176Google Scholar
  15. Franseen EK, Mankiewicz C (1991) Depositional sequences and correlation of middle (?) to late Miocene carbonate complexes, Las Negras and Níjar areas, southeastern Spain. Sedimentology 38:871–898CrossRefGoogle Scholar
  16. Friebe JG (1994) Serpulid-bryozoan-foraminiferal biostromes controlled by temperate climate and reduced salinity: middle Miocene of the Styrian Basin, Austria. Facies 30:51–62CrossRefGoogle Scholar
  17. Giaconia F, Booth-Rea G, Martínez-Martínez JM, Azañón JV, Pérez-Peña M, Pérez-Romero J, Villegas I (2012) Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain). Geomorphology 145–146:90–106CrossRefGoogle Scholar
  18. Jiménez AP, Braga JC (1993) Occurrence and taphonomy of bivalves from the Níjar reef (Messinian, Late Miocene, SE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 102:239–251CrossRefGoogle Scholar
  19. Mankiewicz C (1988) Occurrence and paleocologic significance of Halimeda in late Miocene reefs, southeastern Spain. Coral Reefs 6:271–279CrossRefGoogle Scholar
  20. Manzello D, Liman D (2003) The photosynthetic resilience of Porites furcata to salinity disturbance. Coral Reefs 22:537–540CrossRefGoogle Scholar
  21. Martín JM, Braga JC (1990) Arrecifes Messinienses de Almería. Tipologías de crecimiento, posición estratigráfica y relación con las evaporitas. Geogaceta 7:66–68Google Scholar
  22. Martín JM, Braga JC (1994) Messinian events in the Sorbas Basin in the southeastern Spain and their implications in the recent history of the Mediterranean. Sediment Geol 90:257–268CrossRefGoogle Scholar
  23. McIlreath IA, James NP (1978) Facies models 13, carbonate slopes. Geosci Can 5:189–199Google Scholar
  24. Moberg F, Nyström M, Kautsky N, Tedengren M, Jarayabhand P (1997) Effects of reduced salinity on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and Pocillopora damicornis. Mar Ecol Prog Ser 157:53–59CrossRefGoogle Scholar
  25. Pedrera A, Galindo-Zaldívar J, Marín-Lechado C, García-Tortosa FJ, Ruano P, Garrido AL, Giaconia F (2012) Recent and active faults and folds in the central-eastern internal zones of the Betic Cordillera. J Iber Geol 38:191–208CrossRefGoogle Scholar
  26. Playton TE, Janson X, Kerans C (2010) Carbonate slopes. In: James NP, Dalrymple RW (eds) Facies Models 4, GEOtext 6: Geological Association of Canada. St John’s, Newfoundland, pp 449–476Google Scholar
  27. Pomar L (1991) Reef geometries, erosion surfaces and high-frequency sea-level changes, upper Miocene reef complex, Mallorca, Spain. Sedimentology 38:243–269CrossRefGoogle Scholar
  28. Pomar L, Ward WC (1994) Response of late Miocene Mediterranean reef platform to high-frequency eustasy. Geology 22:131–134CrossRefGoogle Scholar
  29. Qian PY (1999) Larval settlement of polychaetes. Hydrobiologia 402:239–253CrossRefGoogle Scholar
  30. Reolid J, Betzler C, Braga JC, Martín JM, Lindhorst S, Reijmer JJG (2014) Reef slope geometries and facies distribution: controlling factors (Messinian, SE Spain). Facies 60:737–753CrossRefGoogle Scholar
  31. Riding R, Martín JM, Braga JC (1991) Coral stromatolite reef framework, Upper Miocene, Almería, Spain. Sedimentology 38:799–818CrossRefGoogle Scholar
  32. Riegl B, Piller W (2000) Reefs and coral carpets in the northern Red Sea as models for organism-environment feedback in coral communities and its reflection in growth fabrics. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platform systems: components and interactions, vol 178. Geological Society, London, pp 71–88 (special publications) Google Scholar
  33. Rosso A, Sanfilippo R (2005) Bryozoan and serpuloidean skeletobiont communities from Pleistocene of Sicily: spatial utilisation and competitive interactions. In: Fugagnoli A, Bassi D (eds) Giornata di studi paleontologici “Prof. C. Loriga Broglio”, Annali dell’Università di Ferrara. Sezione di Museologia Scientifica e Naturalistica. Volume speciale 2005, Ferrara, Italy, pp 115–130Google Scholar
  34. Sánchez-Almazo IM, Spiro B, Braga JC, Martín JM (2001) Constraints of stable isotope signatures on the depositional palaeoenvironments of upper Miocene reef and temperate carbonates in the Sorbas Basin, SE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:153–172CrossRefGoogle Scholar
  35. Sánchez-Almazo IM, Braga JC, Dinarès-Turell J, Martín JM, Spiro B (2007) Palaeoceanographic controls on reef deposition: the Messinian Cariatiz reef (Sorbas Basin, Almería, SE Spain). Sedimentolology 54:637–660CrossRefGoogle Scholar
  36. Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. In: North CP, Milliken KL (eds) Concepts in sedimentology and paleontology 8. SEPM, Tulsa, p 200Google Scholar
  37. Schlögl J, Michalík J, Zágorsek K, Atrops F (2008) Early Tithonian serpulid-dominated cavity dwelling fauna, and the recruitment pattern of the serpulid larvae. J Paleontol 82:351–361CrossRefGoogle Scholar
  38. Sola F, Braga JC, Aguirre J (2013) Hooked and tubular coralline algae indicate seagrass beds associated to Mediterranean Messinian reefs (Poniente Basin, Almería, SE Spain). Palaeogeogr Palaeclimatol Palaeoecol 374:218–229CrossRefGoogle Scholar
  39. Ten Howe HA, van den Hurk P (1993) A review of recent and fossil serpulid ‘reefs’; actuopalaeontology and the ‘Upper Malm’ serpulid limestones in NW Germany. Geol Mijnbouw 72:23–67Google Scholar
  40. Wilkinson BH, Drummond CN, Diedrich NW, Rotman ED (1999) Poisson processes of carbonate accumulation on Paleozoic and Holocene platforms. J Sediment Res 69:338–350CrossRefGoogle Scholar
  41. Wilson JL (1975) Carbonate facies in geologic history. Springer, New York, p 471CrossRefGoogle Scholar
  42. Wright VP, Burgess PM (2005) The carbonate factory continuum, facies mosaics and microfacies: an appraisal of some of the key concepts underpinning carbonate sedimentology. Facies 51:17–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut für GeologieUniversität HamburgHamburgGermany

Personalised recommendations