Advertisement

Facies

, 63:1 | Cite as

The soda lake—mesosaline halite lake transition in the Ries impact crater basin (drilling Löpsingen 2012, Miocene, southern Germany)

  • Gernot ArpEmail author
  • Bent T. Hansen
  • Andreas Pack
  • Andreas Reimer
  • Burkhard C. Schmidt
  • Klaus Simon
  • Dietmar Jung
Original Article

Abstract

Lacustrine sediments of impact craters form valuable climate archives, although chemical evolution and changes in the catchment area potentially superimpose, distort, or obliterate primary climate signals. The 15 Ma Nördlinger Ries in southern Germany, one of the most intensively studied terrestrial impact structures, harbors a well-preserved but controversially interpreted lacustrine sedimentary fill. While earlier studies proposed a climate-driven development from a playa to a mesosaline soda lake (Units A and B), which then decreased in salinity (Units C and D), new investigations suggest a chemical evolution from a playa and soda lake (Units A–C) to a mesosaline halite lake (Unit D), which then turned into a hypersaline halite lake, until an outlet formed. However, problems in the stratigraphic correlation of basin center and margin sediments impeded the recognition of the hypothetical soda to halite lake transition to date. A new drilling in the central crater now provides a solution for the problem. Unit C still comprises analcime-rich dolomite marl with reversely correlated δ13C and δ18O values, thereby reflecting a shallow, highly alkaline, saline meromictic lake (Na–Mg–CO3–SO4). In turn, Unit D is characterized by a change to cycles composed of lignite, diatomite, claystone, marl, and limestone. Gypsum pseudomorphs at the cycle tops indicate saline lake water (Na–Mg–Cl–SO4) with increased Ca2+ concentrations. Reworked, previously aragonitic, green algal tubes prove that early parts of Unit D sediments formed contemporaneously to basin margin green algal bioherms, contrary to previous assumptions. Therefore, the change from a highly alkaline soda lake to a mesosaline halite lake reflects increasing influx of waters from the Bunte Breccia into the lake, while suevite-derived weathering solutions decreased. Low-salinity conditions during Unit D are temporary phases during lake-level rise at the beginning of short-term cycles, whereas stable oxygen isotope ratios indicate meso- to hypersaline conditions at cycle tops. However, the long-term increase in salinity leading to continuous hypersaline conditions is only preserved in carbonates at the crater rim.

Keywords

Paleoenvironment Ries impact crater Soda lake Isotopes Geochemistry Sedimentary cycles 

Notes

Acknowledgements

The authors would like to thank Alexander Nützel BSPG for providing the original notes of Richard Höfling’s Nördlingen 1973 drill core description, and Richard Höfling for his permit to use his notes. We thank Wolfgang Dröse for SEM sample preparation. Cuttings were provided by BauGrund Süd Gesellschaft für Geothermie mbH drilling company. We are indebted to the employer of the drilling for permission to use samples and drill data for this paleolimnological study. We thank Maurice Tucker and Julian Andrews for their constructive and helpful reviews.

Supplementary material

10347_2016_483_MOESM1_ESM.xls (30 kb)
Supplementary material 1 (XLS 30 kb)
10347_2016_483_MOESM2_ESM.ppt (439 kb)
Supplementary material 2 (PPT 439 kb)
10347_2016_483_MOESM3_ESM.xls (28 kb)
Supplementary material 3 (XLS 28 kb)
10347_2016_483_MOESM4_ESM.jpg (1.3 mb)
Metric measurements of ostracod valves from 66 and 50 m depth in comparison with the data obtained from Strandesia risgoviensis (Sieber) by Janz (1995). Left: Strandesia cf. risgoviensis (Sieber), right valve, external view. Löpsingen 50 m depth, basis of Unit D. Right: SEM micrographs of Strandesia risgoviensis (Sieber), external and internal view, Belzheim, from Janz (1995, pl.1/3-4). (JPEG 1372 kb)
10347_2016_483_MOESM5_ESM.jpg (1.6 mb)
Cross-plot of total rock Sr and MgCO3 contents in carbonates from the drilling Löpsingen. Note co-variation between Sr and MgCO3 in dolomicrites and micrites indicating that Sr is bound to the dolomite phase. Only the Cladophorites tube calcite shows exceptionally high Sr values pointing to a primary aragonitic composition. (JPEG 1679 kb)
10347_2016_483_MOESM6_ESM.jpg (1.6 mb)
Cross-plot of δ18O and MgCO3 content in carbonates of the drilling Löpsingen. Note co-variation of δ18O and MgCO3 [mole % in carbonate phase] in dolomicrites and dolomite-containing micrites (Lop 37) suggesting that the co-variation slope largely reflects mixed analysis of the two mineral phases, dolomite and calcite. (JPEG 1656 kb)

References

  1. Angenheister G, Pohl J (1969) Die seismischen Messungen im Ries von 1948–1969. Geologica Bavarica 61:304–326Google Scholar
  2. Arp G (1995) Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-impact-crater (Miocene, southern Germany). Facies 33:35–90CrossRefGoogle Scholar
  3. Arp G (2006) Sediments of the Ries Crater Lake (Miocene, southern Germany)—Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 45: 213–236Google Scholar
  4. Arp G, Wiesheu R (1997) Ein kontinuierliches Profil von Algenbiohermen bis zu Seetonen des miozänen Rieskratersees: sequenzen, Mikrofazies und Dolomitisierung. Geologische Blätter für Nordost-Bayern 47:461–486Google Scholar
  5. Arp G, Blumenberg M, Hansen BT, Jung D, Kolepka C, Lenz O, Nolte N, Poschlod K, Reimer A, Thiel V (2013a) Chemical and ecological evolution of the Miocene Ries impact crater lake, Germany: a re-interpretation based on the Enkingen (SUBO 18) drill core. Geol Soc Am Bull 125:1125–1145CrossRefGoogle Scholar
  6. Arp G, Kolepka C, Simon K, Karius V, Nolte N, Hansen BT (2013b) New evidence for persistent impact-generated hydrothermal activity in the Miocene Ries impact structure, Germany. Meteorit Planet Sci 48:2491–2516CrossRefGoogle Scholar
  7. Beadle LC (1943) An ecological survey of some inland saline waters of Algeria. J Linn Soc (Zool) 41:218–242CrossRefGoogle Scholar
  8. Bertrand-Sarfati J, Freytet P, Plaziat JC (1994) Microstructures in Tertiary nonmarine stromatolites (France). Comparison with Proterozoic. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites 2, pp 155–l91Google Scholar
  9. Böhme M (2003) The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195:389–401CrossRefGoogle Scholar
  10. Böhme M, Bruch AA, Selmeier A (2007) The reconstruction of early and Middle Miocene climate and vegetation in southern Germany as determined from the fossil wood flora. Palaeogeogr Palaeoclimatol Palaeoecol 253:91–114CrossRefGoogle Scholar
  11. Bolten, RH (1977) Die karbonatischen Ablagerungen des obermiozänen Kratersees im Nördlinger Ries. Dissertation, Universität MünchenGoogle Scholar
  12. Cohen AS (2003) Paleolimnology. The History and Evolution of Lake Systems. Oxford University Press, OxfordGoogle Scholar
  13. Deffner C, Fraas O (1877) Begleitworte zur geognostischen Spezialkarte von Württemberg. Atlasblätter Bopfingen und Ellenberg, StuttgartGoogle Scholar
  14. Dehm R, Gall H, Höfling R, Jung W, Malz H (1977) Die Tier- und Pflanzenreste aus den obermiozänen Riessee-Ablagerungen in der Forschungsbohrung Nördlingen 1973. Geologica Bavarica 75:91–109Google Scholar
  15. English PM (2001) Formation of analcime and moganite at Lake Lewis, central Australia: significance of groundwater evolution in diagenesis. Sediment Geol 143:219–244CrossRefGoogle Scholar
  16. Ernstson K (1974) The structure of the Ries Crater from geoelectric depth soundings. J Geophys 40:639–659Google Scholar
  17. Flower BP, Kennett JP (1994) The Middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555CrossRefGoogle Scholar
  18. Fontes JC, Gasse F, Callot Y, Plaziat JC, Carbonell P, Dupeuble PA, Kaczmarska I (1985) Freshwater to marine-like environments from Holocene lakes in northern Sahara. Nature 317:608–610CrossRefGoogle Scholar
  19. Förstner U, Rothe P (1977) Bildung und Diagenese der Karbonatsedimente im Ries-See (nach dem Profil der Forschungsbohrung Nördlingen 1973). Geologica Bavarica 75:49–58Google Scholar
  20. Freytet P (2000) Distribution and palaeoecology of non marine algae and stromatolites: II, the Limagne of Allier Oligo-Miocene lake (central France). Ann Paléontol 86:3–57CrossRefGoogle Scholar
  21. Füchtbauer H, von der Brelie G, Dehm R, Förstner U, Gall H, Höfling R, Hoefs J, Hollerbach H, Jankowski B, Jung W, Malz H, Mertes H, Rothe P, Salger M, Wehner H, Wolf M (1977) Tertiary lake sediments of the Ries, research borehole Nördlingen 1973—a summary. Geologica Bavarica 75:13–19Google Scholar
  22. Gall H, Jung W, Dehm R (1974) Vorbericht über die Tier- und Pflanzenreste aus den obermiozänen Riessee-Ablagerungen in der Forschungsbohrung Nördlingen 1973. Geologica Bavarica 72:53–57Google Scholar
  23. Gasse F, Fontes JC, Plaziat JC, Carbonael P, Kaczmarska I, De Deckker P, Soulié-Marsche I, Callot Y, Dupeuble PA (1987) Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from north Sahara. Palaeogeogr Palaeoclimatol Palaeoecol 60:1–46CrossRefGoogle Scholar
  24. Geary DH, Rich J, Valley JW, Baker K (1989) Stable isotopic evidence of salinity change: influence on the evolution of melanopsid gastropods in the late Miocene Pannonian basin. Geology 17:981–985CrossRefGoogle Scholar
  25. Gurov EP, Kelley SP, Koeberl C, Dykan NI (2006) Sediments and impact rocks filling the Boltysh impact crater. In: Cockell CS, Koeberl C, Gilmour I (eds) Biological processes associated with impact events. Impact Studies 8, pp 335–358Google Scholar
  26. Hammer UT (1986) Saline lake ecosystems of the world. Junk Publishers, DordrechtGoogle Scholar
  27. Harzhauser M, Mandic O, Latal C, Kern A (2012) Stable isotope composition of the Miocene Dinaride Lake System deduced from its endemic mollusc fauna. Hydrobiologia 682:27–46CrossRefGoogle Scholar
  28. Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133:637–660CrossRefGoogle Scholar
  29. Hüttner R, Schmidt-Kaler H (1999) Die geologische Karte des Rieses 1:50000 (2nd ed.), Erläuterungen zu Erdgeschichte, Bau und Entstehung des Kraters sowie zu den Impaktgesteinen. Geologica Bavarica 104: 7–76Google Scholar
  30. Jankowski B (1977) Die Postimpakt-Sedimente in der Forschungsbohrung Nördlingen 1973. Geologica Bavarica 75:21–36Google Scholar
  31. Jankowski B (1981) Die Geschichte der Sedimentation im Nördlinger Ries und Randecker Maar. Bochumer geol geotech Arb 6:1–315Google Scholar
  32. Janz H (1995) Neubeschreibung von Strandesia risgoviensis nov. comb. (Sieber 1905) (Crustacea, Ostracoda) aus dem Nördlinger Ries (Miozän, Süddeutschland). Stuttgarter Beitr Naturk B 233:1–17Google Scholar
  33. Krabbenhöft A, Fietzke J, Eisenhauer A, Liebetrau V, Böhm F, Vollstaedt H (2009) Determination of radiogenic and stable strontium isotope ratios (87Sr/86Sr; δ88/86Sr) by thermal ionization mass spectrometry applying an 87Sr/84Sr double spike. J Anal At Spectrom 24:1267–1271CrossRefGoogle Scholar
  34. Latal C, Piller WE, Harzhauser M (2004) Palaeoenvironmental reconstructions by stable isotopes of Middle Miocene gastropods of the Central Paratethys. Palaeogeogr Palaeoclimatol Palaeoecol 211:157–169CrossRefGoogle Scholar
  35. Latal C, Piller WE, Harzhauser M (2006) Shifts in oxygen and carbon isotope signals in marine molluscs from the Central Paratethys (Europe) around the Lower/Middle Miocene transition. Palaeogeogr Palaeoclimatol Palaeoecol 231:347–360CrossRefGoogle Scholar
  36. Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831CrossRefGoogle Scholar
  37. Li HC, Ku TL (1997) δ13C–δ18C covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeogr Palaeoclimatol Palaeoecol 133:69–80CrossRefGoogle Scholar
  38. Ludwig R (1857–1858) Fossile Pflanzen aus der mittleren Etage der Wetterau-Rheinischen Tertiär-Formation. Palaeontographica 5: 132–134 (1857), 135–151 (1858), pls. 27–33 (1858)Google Scholar
  39. McKenzie JA (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: a stable isotope study. J Geol 89:185–198CrossRefGoogle Scholar
  40. Melles M, Brigham-Grette J, Minyuk PS, Nowaczyk NR, Wennrich V, DeConto RM, Anderson PM, Andreev AA, Coletti A, Cook TL, Haltia-Hovi E, Kukkonen M, Lozhkin AV, Rosen P, Tarasov P, Vogel H, Wagner B (2012) 2.8 Million years of arctic climate change from lake El’gygytgyn, NE Russia. Science 337:315–320CrossRefGoogle Scholar
  41. Pohl J (1977) Paläomagnetische und gesteinsmagnetische Untersuchungen an den Kernen der Forschungsbohrung Nördlingen 1973. Geologica Bavarica 75:329–348Google Scholar
  42. Pohl J, Stöffler D, Gall H, Ernstson K (1977) The Ries impact crater. In: Roddy DJ, Pepin RG, Merril RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 343–458Google Scholar
  43. Reimer A, Landmann G, Kempe S (2009) Lake Van, Eastern Anatolia, hydrochemistry and history. Aquat Geochem 15:195–222CrossRefGoogle Scholar
  44. Reis OM (1923) Kalkalgen und Seesinterkalke aus dem rheinpfälzischen Tertiär. Geognostische Jahreshefte 36:103–130Google Scholar
  45. Reis OM (1926) Zusammenfassung über die im Ries südlich von Nördlingen auftretenden Süßwasserkalke und ihre Entstehung. Jber Mitt oberrh geol Ver NF 14(1925):176–190Google Scholar
  46. Remy RR, Ferrell RE (1989) Distribution and origin of analcime in marginal lacustrine mudstones of the Green River Formation, south-central Uinta Basin, Utah. Clay Clay Miner 37:419–432CrossRefGoogle Scholar
  47. Riding R (1979) Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries crater, Upper Miocene, southern Germany. Sedimentology 26:645–680CrossRefGoogle Scholar
  48. Rocholl A, Ovtcharova M, Schaltegger U, Wijbrans J, Pohl J, Harzhauser M, Prieto J, Ulbig A, Böhme M (2011) A precise and accurate “astronomical” age of the Ries impact crater, Germany: a cautious note on argon dating of impact material. Geophys Res Abstr 13: EGU 2011-13322-7Google Scholar
  49. Romanek C, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430CrossRefGoogle Scholar
  50. Rosen MR, Coshell L, Turner JV (1992) Water-rock interaction in the formation of diagenetic dolomite in a non-marine, coastal evaporitic basin, Lake Hayward, Western Australia. In: Kharaka YK, Maest AS (eds) Water Rock Interaction, vol 1., Low-temperature environments, proceedings of the 7th international symposium on water–rock interaction. Park City Utah, Balkema, Rotterdam, pp 663–667Google Scholar
  51. Rosenbaum J, Sheppard SM (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150CrossRefGoogle Scholar
  52. Rothe P, Hoefs J (1977) Isotopen-geochemische Untersuchungen an Kabonaten der Ries-See-Sedimente der Forschungsbohrung Nördlingen 1973. Geologica Bavarica 75:59–66Google Scholar
  53. Rothe P, Hoefs J, Sonne V (1974) The isotopic composition of Tertiary carbonates from the Mainz Basin: an example of isotopic fractionations in ‘closed basins’. Sedimentology 21:373–395CrossRefGoogle Scholar
  54. Salger M (1977) Die Tonminerale der Forschungsbohrung Nördlingen 1973. Geologica Bavarica 75:67–73Google Scholar
  55. Salvermoser S, Huber B, Schuler G (1998) Die Grundwasserführung der tertiären Seeablagerungen im Nördlinger Ries. Geologische Blätter für Nordost-Bayern 48:103–118Google Scholar
  56. Schauderna H (1983) Die Diatomeenflora aus den miozänen Seeablagerungen im Nördlinger Ries. Palaeontographica B 188:83–193Google Scholar
  57. Shanahan TM, Overpeck JT, Anchukaitis KJ, Beck JW, Cole JE, Dettman DL, Peck JA, Scholz CA, King JW (2009) Atlantic forcing of persistent drought in West Africa. Science 324:377–380CrossRefGoogle Scholar
  58. Shoemaker EM, Chao ECT (1961) New evidence for the impact origin of the Ries basin, Bavaria, Germany. J Geophys Res 66:3371–3378CrossRefGoogle Scholar
  59. Stapf KRG (1988) Kalkalgen-Cyanobakterien-Riffe in den Hydrobienschichten des Mainzer Beckens (Untermiozän). Geol Jb A 110:311–335Google Scholar
  60. Stöffler D, Artemieva NA, Wünnemann K, Reimold U, Jacob J, Hansen BK, Summerson IAT (2013) Ries crater and suevite revisited—observations and modeling part I: observations. Meteorit Planet Sci 48:515–589CrossRefGoogle Scholar
  61. Surdam RC (1977) Zeolites in closed hydrologic systems. In: Mumpton FA (ed) Mineralogy and geology of natural zeolites. Rev Mineral 4: 65–79Google Scholar
  62. Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol 80:261–279Google Scholar
  63. Talbot MR, Johannessen T (1992) A high-resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 220:23–37CrossRefGoogle Scholar
  64. Talbot MR, Kelts K (1990) Palaeolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments. In: Katz B (ed) Lacustrine basin exploration: case studies and modern analogs. AAPG Mem 50: 99–112Google Scholar
  65. Tarutani T, Clayton RN, Mageda TK (1969) The effects of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33:987–996CrossRefGoogle Scholar
  66. Valero-Garcés BL, Kelts K, Ito E (1995) Oxygen and carbon isotope trends and sedimentological evolution of a meromictic and saline lacustrine system: the Holocene Medicine Lake basin, North American Great Plains, USA. Palaeogeogr Palaeoclimatol Palaeoecol 117:253–278CrossRefGoogle Scholar
  67. Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320CrossRefGoogle Scholar
  68. von der Brelie G (1977) Die Pollenflora der See-Sedimente in der Forschungsbohrung Nördlingen 1973. Geologica Bavarica 75:111–125Google Scholar
  69. Wolf M (1977) Kohlenpetrographische Untersuchung der See-Sedimente der Forschungsbohrung Nördlingen 1973 und Vergleich mit anderen Untersuchungsergebnissen aus dem Ries. Geologica Bavarica 75:127–138Google Scholar
  70. Wolff M, Füchtbauer H (1976) Die karbonatische Randfazies der tertiären Süßwasserseen des Nördlinger Ries und des Steinheimer Beckens. Geol Jb D 14:3–53Google Scholar
  71. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gernot Arp
    • 1
    Email author
  • Bent T. Hansen
    • 1
  • Andreas Pack
    • 1
  • Andreas Reimer
    • 1
  • Burkhard C. Schmidt
    • 1
  • Klaus Simon
    • 1
  • Dietmar Jung
    • 2
  1. 1.Geowissenschaftliches ZentrumGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Bayerisches Landesamt für UmweltHof/SaaleGermany

Personalised recommendations