, 62:22 | Cite as

Rocking around a volcanic island shelf: Pliocene Rhodolith beds from Malbusca, Santa Maria Island (Azores, NE Atlantic)

  • Ana Cristina Rebelo
  • Michael W. Rasser
  • Andreas Kroh
  • Markes E. Johnson
  • Ricardo S. Ramalho
  • Carlos Melo
  • Alfred Uchman
  • Björn Berning
  • Luís Silva
  • Vittorio Zanon
  • Ana I. Neto
  • Mário Cachão
  • Sérgio P. Ávila
Original Article


Rhodoliths are a common producer of carbonates on modern and ancient shelves worldwide, and there is growing evidence that they thrive on volcanic insular shelves. However, little is still known on how rhodoliths cope with the demands of this particularly dynamic environment. In this study, the focus is placed on fossil rhodoliths from a Pliocene sequence at Santa Maria Island, Azores, in order to gain further insight into the life cycle (and death) of rhodoliths living within a mid-ocean active volcanic setting. These rhodoliths occur as a massive accumulation within a larger submarine volcano-sedimentary sequence that was studied from the macro- to the micro-scale in order to reconstruct the paleoenvironmental conditions under which the rhodolith accumulation was deposited and buried. All fossil rhodoliths from this setting are multi-specific and demonstrate robust growth forms with a lumpy morphology. Moreover, taphonomical analyses show the succession of several destructive events during rhodolith growth, suggesting life under a highly dynamic system prior to stabilization and burial. The rhodoliths therefore tell a story of an eventful life, with multiple transport and growth stages, owing to the environment in which they lived. Transport and deposition to their final resting place was storm-associated, as supported by the general sedimentary sequence. In particular, the sequence features an amalgamation of tempestites deposited under increasing water depths, sediment aggradation, and before burial by volcanic activity. This transgressive trend is also attested by the overall characteristics of the volcano-sedimentary succession, which exhibits the transition to subaerial environment in excess of 100 m above the rhodolith bed.


Coralline red algae Peyssonneliacean algae Early Pliocene Paleoenvironment Azores Archipelago 



A. C. Rebelo was supported by a grant SFRH/BD/77310/2011 from FCT (Fundação para Ciência e Tecnologia), Portugal. S. P. Ávila was supported by FCT Ciência 2008 contract. V. Zanon was funded by the Fundo Regional para a Ciência, through grant (PROEMPREGO Operational Program and Regional Government of the Azores). We thank Direcção Regional da Ciência, Tecnologia e Comunicações (Regional Government of the Azores), Clube Naval de Santa Maria, Câmara Municipal de Vila do Porto and all the participants of the several International Workshops “Palaeontology in Atlantic Islands” (2011–2015) for field assistance. This research also received substantial support from the SYNTHESYS Project (, which is financed by European Community Research Infrastructure Action under the FP7 “Capacities” Program: A. C. Rebelo studied rhodoliths at the Natural History Museum London (GB-TAF-3394), B. Berning investigated type material of Azorean bryozoans (FR-TAF-1902, GB-TAF-3347), and S. P. Ávila studied the Miocene molluscs at the Museum für Naturkunde, Berlin (DE-TAF-1071). We thank Davide Bassi (Università di Ferrara) for the identification of the peyssonneliacean algae. Sincere thanks to C. Wimmer-Pfeil (Staatliches Museum für Naturkunde Stuttgart, Germany) and Anton Englert (Naturhistorisches Museum Wien) for thin-sections preparation and A. R. Mendes and J. Pacheco (CVARG, Universidade dos Açores) for laboratory assistance. We are also grateful to Editor-in-Chief Wolfgang Kiessling, reviewer Jochen Halfar and an anonymous reviewer for providing useful comments and suggestions that helped improve the final manuscript.


  1. Aguirre J, Braga JC, Martín JM, Betzler C (2012) Palaeoenvironmental and stratigraphic significance of Pliocene rhodolith beds and coralline algal bioconstructions from the Carboneras Basin (SE Spain). Geodiversitas 34(1):115–136CrossRefGoogle Scholar
  2. Ávila SP, Madeira P, Zazo C, Kroh A, Kirby M, da Silva CM, Cachão M, Martins AMF (2009) Palaeoecology of the Pleistocene (MIS 5.5) outcrops of Santa Maria Island (Azores) in a complex oceanic tectonic setting. Palaeogeogr Palaeoclimatol Palaeoecol 274(1–2):18–31CrossRefGoogle Scholar
  3. Ávila SP, Ramalho R, Vullo R (2012) Systematics, palaeoecology and palaeobiogeography of the Neogene fossil sharks from the Azores (Northeast Atlantic). Ann Paléontol 98:167–189CrossRefGoogle Scholar
  4. Ávila SP, Melo C, Silva L, Ramalho R, Quartau R, Hipólito A, Cordeiro R, Rebelo AC, Madeira P, Rovere A, Hearty P, Henriques D, da Silva CM, Martins AMF, Zazo C (2015a) A review of the MIS 5e highstand deposits from Santa Maria Island(Azores, NE Atlantic): palaeobiodiversity, palaeoecology and palaeobiogeography. Quatern Sci Rev 114:126–148CrossRefGoogle Scholar
  5. Ávila SP, Ramalho R, Habermann J, Quartau R, Kroh A, Berning B, Johnson M, Kirby M, Zanon V, Titschack J, Goss A, Rebelo AC, Melo C, Madeira P, Cordeiro R, Meireles R, Bagaço L, Hipólito A, Uchman A, da Silva CM, Cachão M, Madeira J (2015b) Palaeoecology, taphonomy, and preservation of a lower Pliocene shell bed (coquina) from a volcanic oceanic island (Santa Maria Island, Azores, NE Atlantic Ocean). Palaeogeogr Palaeoclimatol Palaeoecol 430:57–73. doi: 10.1016/j.palaeo.2015.04.015 CrossRefGoogle Scholar
  6. Ávila SP, Melo C, Berning B, Cordeiro R, Landau BM, da Silva CM, Cachão M (2016) Persististrombus coronatus (Mollusca: Strombidae) in the lower Pliocene of Santa Maria Island (Azores, NE Atlantic): palaeoecology, palaeoclimatology and palaeobiogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 441:912–923CrossRefGoogle Scholar
  7. Baarli BG, Cachão M, da Silva CM, Johnson ME, Mayoral EJ, Santos A (2014) A Middle Miocene carbonate embankment on an active volcanic slope: ilhéu de Baixo, Madeira Archipelago, Eastern Atlantic. Geol J 49:90–106CrossRefGoogle Scholar
  8. Basso D, Tomaselli V (1994) Palaeoecological potentiality of rhodoliths: a Mediterranean case history. In: Matteucci R et al. (ed) Studies on ecology and paleoecology of benthic communities. Boll Della Soc Paleontol Ital 2:17–27Google Scholar
  9. Basso D, Nalin R, Campbell CS (2009) Shallow-water Sporolithon rhodoliths from North Island (New Zealand). Palaios 24:92–103CrossRefGoogle Scholar
  10. Bosence D (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19:71–88Google Scholar
  11. Bosence D (1983) The occurrence and ecology of Recent rhodoliths—a review. In: Peryt TM (ed) Coated grains. Springer-Verlag, Berlin, pp 217–224CrossRefGoogle Scholar
  12. Bourrouilh-Le Jan FG, Hottinger LC (1988). Occurrence of rhodolites in the tropical Pacific—a consequence of mid-Miocene paleo-oceanographic change. In: Nelson CS (ed), Non-tropical shelf carbonates—modern and ancient. Sediment Geol 60:355–367Google Scholar
  13. Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in Southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:27–41CrossRefGoogle Scholar
  14. Braga JC, Vescogni A, Bosellini FR, Aguirre J (2009) Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean Messinian reefs. Palaeogeogr Palaeoclimatol Palaeoecol 275:113–128CrossRefGoogle Scholar
  15. Bromley RG, Asgaard U (1993) Two bioerosion ichnofacies produced by early and late burial associated with sea-level changes. Geol Rundsch 82:276–280CrossRefGoogle Scholar
  16. Bromley RG, Asgaard U, Jensen M (1997) Experimental study of sediment structures created by a spatangoid echinoid, Echinocardium mediterraneum. Proc Geol Assoc Lond 108:183–190CrossRefGoogle Scholar
  17. Buatois LA, Mángano MG (2011) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, Cambridge, p 358CrossRefGoogle Scholar
  18. Cabioch J, Floch JY, Le Toquiton A, Boudouresque CF, Meinesz A, Verlaque M (1992) Guide des algues des mers d’Europe. Manche/Atlantique et Méditerranée. Ed. Delachaux et Niéstlé, 234 pGoogle Scholar
  19. Checconi A, Bassi D, Carannante G, Monaco P (2010) Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sed Geol 225:50–66CrossRefGoogle Scholar
  20. de Gibert JM, Martinell J, Domènech R (1998) Entobia ichnofacies in fossil rocky shores, Lower Pliocene, northwestern Mediterranean. Palaios 13:476–487CrossRefGoogle Scholar
  21. Ferreira OV (1955) A fauna Miocénica da ilha de Santa Maria. Comun Serv Geol Port 36:9–44Google Scholar
  22. Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin, p 976Google Scholar
  23. França Z, Cruz JV, Nunes JC, Forjaz VH (2003) Geologia dos Açores: uma perspectiva actual. Açoreana 10:11–140Google Scholar
  24. Gregory MR (1991) New trace fossils from the Miocene of Northland, New Zealand: Rorschachichnus amoeba and Piscichnus waitemata. Ichnos 1:159–205CrossRefGoogle Scholar
  25. Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Accessed 11 Nov 2015
  26. Johnson ME, da Silva CM, Santos A, Baarli BG, Cachão M, Mayoral EJ, Rebelo AC, Ledesma-Vázques J (2011) Rhodolith transport and immobilization on a volcanically active rocky shore: Middle Miocene at Cabeço das Laranjas on Ilhéu de Cima (Madeira Archipelago, Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 300:113–127CrossRefGoogle Scholar
  27. Johnson ME, Baarli BG, Cachão M, da Silva CM, Ledesma-Vázquez J, Mayoral EJ, Ramalho RS, Santos A (2012) Rhodoliths, uniformitarianism, and Darwin: Pleistocene and recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:83–100CrossRefGoogle Scholar
  28. Johnson ME, Ramalho RS, Baarli BG, Cachão M, da Silva CM, Mayoral EJ, Santos A (2014) Miocene–Pliocene rocky on São Nicolau (Cape Verde Islands): contrasting windward and leeward biofacies on a volcanically active oceanic island. Palaeogeogr Palaeoclimatol Palaeoecol 395:131–143CrossRefGoogle Scholar
  29. Johnson ME, Ledesma-Vázquez J, Ramalho R, da Silva CM, Rebelo AC, Santos A, Baarli BG, Mayoral EJ, Cachão M (2016) Taphonomic range and sedimentary dynamics of modern and fossil rhodolith beds: Macaronesian realm (North Atlantic Ocean). In: Rhodolith/maerl beds: a global perspective. Springer, BerlinGoogle Scholar
  30. Lee DE, Scholz J, Gordon DP (1997) Paleoecology of a late Eocene mobile rockground biota from North Otago, New Zealand. Palaios 12:568–581CrossRefGoogle Scholar
  31. Lund M, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, eastern Australia. Facies 42:25–34CrossRefGoogle Scholar
  32. Madeira P, Kroh A, Martins AMF, Ávila SP (2007) The marine fossils from Santa Maria Island (Azores, Portugal): an historical overview. In: Ávila SP, Martins AMF (eds) Proceedings of the “1st Atlantic Islands Neogene”, International Congress, Ponta Delgada, 12–14 June 2006. Açoreana Supl 5: 59–73Google Scholar
  33. Madeira P, Kroh A, Cordeiro R, Meireles R, Ávila SP (2011) The fossil echinoids of Santa Maria Island, Azores (Northern Atlantic Ocean). Acta Geol Pol 61(3):243–264Google Scholar
  34. Mayoral E, Ledesma-Vazquez J, Baarli BG, Santos A, Ramalho R, Cachão M, da Silva CM, Johnson ME (2013) Ichnology in oceanic islands; case study from the Cape Verde Archipelago. Palaeogeogr Palaeoclimatol Palaeoecol 381–382:47–66CrossRefGoogle Scholar
  35. Meireles RP, Faranda C, Gliozzi E, Pimentel A, Zanon V, Ávila SP (2012) Late Miocene marine ostracods from Santa Maria island, Azores (NE Atlantic): systematics, palaeoecology and palaeobiogeography. Rev Micropaléontol 55(4):133–148CrossRefGoogle Scholar
  36. Meireles RP, Quartau R, Ramalho RS, Rebelo AC, Madeira J, Zanon V, Ávila SP (2013) Depositional processes on oceanic island shelves—evidence from storm-generated Neogene deposits from the mid-North Atlantic. Sedimentology 60:1769–1785CrossRefGoogle Scholar
  37. Meireles RP, Keyser D, Ávila SP (2014) The Holocene to recent ostracods of the Azores archipelago (NE Atlantic): systematics and biogeography. Mar Micropaleontol 112:13–26CrossRefGoogle Scholar
  38. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PS, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science 310(5752):1293–1298CrossRefGoogle Scholar
  39. Pemberton GS, Spila M, Pulham AJ, Saunders T., MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis & Avalon Reservoirs, Jeanne D’Arc Basin. Geological Association of Canada, Short course notes, 15, p 343Google Scholar
  40. Pemberton SG, MacEachern JA, Dashtgard SE, Bann KL, Gingras MK, Zonneveld JP (2012) Shoreface. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64. Elsevier, Amsterdam, pp 563–603Google Scholar
  41. Ramalho RS (2011) Building the Cape Verde Islands. Springer, Berlin, p 207CrossRefGoogle Scholar
  42. Ramalho RS, Quartau R, Trenhaile AS, Mitchell NC, Woodroffe CD, Ávila SP (2013) Coastal evolution on volcanic oceanic islands: a complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth Sci Rev 127:140–170CrossRefGoogle Scholar
  43. Ramalho RS, Helffrich G, Madeira J, Cosca M, Quartau R, Thomas C, Hipólito A, Ávila SP (2014) The emergence and evolution of Santa Maria Island (Azores)—the conundrum of uplifting islands revisited. AGU Fall Meeting, San Francisco, 15–19 December: Abstract V11B-4697Google Scholar
  44. Rasser M (1994) Facies and palaeoecology of rhodoliths and acervulinid macroids in the Eocene of the Krappfeld (Austria). Beitr Paläontol 19:191–217Google Scholar
  45. Rebelo AC, Rasser MW, Riosmena-Rodríguez R, Neto AI, Ávila SP (2014) Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island (Azores, NE Atlantic): a critical evaluation. Phytotaxa 190(1):370–382CrossRefGoogle Scholar
  46. Rosas-Alquicira EF, Riosmena-Rodríguez R, Couto RP, Neto AI (2009) New additions to the Azorean algal flora, with ecological observations on rhodolith formations. Cah Biol Mar 50:143–151Google Scholar
  47. Santos A, Mayoral E, Johnson ME, Baarli BG, da Silva CM, Cachão M, Ledesma-Vázquez J (2012) Basalt mounds and adjacent depressions attract contrasting biofacies on a volcanically active Middle Miocene coastline (Porto Santo, Madeira Archipelago, Portugal). Facies 58:573–585CrossRefGoogle Scholar
  48. Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci 92:445–464CrossRefGoogle Scholar
  49. Seike K (2007) Palaeoenvironmental and palaeogeographical implications of modern Macaronichnus segregatis like traces in foreshore sediments on the Pacific coast of central Japan. Palaeogeogr Palaeoclimatol Palaeoecol 25:497–502CrossRefGoogle Scholar
  50. Serralheiro A (2003) A geologia da Ilha de Santa Maria, Açores. Açoreana 10:141–192Google Scholar
  51. Serralheiro A, Madeira J (1990) Stratigraphy and geochronology of Santa Maria island (Azores). Livro Homenagem Carlos Romariz. Departamento de Geologia da Faculdade de Ciências da Universidade de Lisboa, Portugal, pp 357–376Google Scholar
  52. Serralheiro A, Alves CAM, Forjaz VH, Rodrigues B (1987) Carta Vulcanológica dos Açores, Ilha de Santa Maria. Escala 1:15.000 (Folhas 1 e 2). (Ed. Serviço Regional de Protecção Civil dos Açores e Universidade dos Açores). Ponta Delgada, PortugalGoogle Scholar
  53. Sibrant ALR, Hildendrand A, Marques FO, Costa ACG (2015) Volcano-tectonic evolution of the Santa Maria Island (Azores): implications for palaeostress evolution at the western Eurasia-Nubia plate boundary. J Volcanol Geoth Res. doi: 10.1016/j.jvolgeores.2014.12.017 Google Scholar
  54. Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas, a study in particle morphogenesis. J Geol 66:114–150CrossRefGoogle Scholar
  55. Steller DL, Foster M (1995) Environmental factors influencing distribution and morphology of rhodoliths in Bahia Concepción, B.C.S., Mexico. J Exp Mar Biol Ecol 194:201–212CrossRefGoogle Scholar
  56. Tucker ME (2003) Mixed clastic–carbonate cycles and sequences: quaternary of Egypt and carboniferous of England. Geol Croat 56:19–37Google Scholar
  57. Uchman A, Johnson ME, Rebelo AC, Melo C, Cordeiro R, Ramalho R, Ávila SP (2015) Vertically-oriented trace fossil Macaronichnus segregatis from Neogene of Santa Maria Island (Azores; NE Atlantic. In: Mara, N. (Ed.), 13th International Ichnofabric Workshop, ichnofabric studies linking past, present, and future, Kochi, Japan, 14–21 May 2015, Abstract book, p 27Google Scholar
  58. Uchman A, Johnson ME, Rebelo AC, Melo C, Cordeiro R, Ramalho R, Ávila SP (2016) Vertically-oriented trace fossil Macaronichnus segregatis from Neogene of Santa Maria Island (Azores; NE Atlantic) records a specific palaeohydrological regime on a small oceanic island. Geobios. doi: 10.1016/j.geobios.2016.01.016 Google Scholar
  59. Wilmsen M, Niebuhr B (2013) The rosetted trace fossil Dactyloidites ottoi (Geinitz, 1849) from the Cenomanian (Upper Cretaceous) of Saxony and Bavaria (Germany): ichnotaxonomic remarks and palaeoenvironmental implications. Paläontol Zeitschr 88:123–138CrossRefGoogle Scholar
  60. Winkelmann K, Buckeridge JS, Costa AC, Dionisio MAM, Medeiros A, Cachao M, Avila SP (2010) Zullobalanus santamariaensis sp. nov. a new late Miocene barnacle species of the family Archeobalanidae (Cirripedia: Thoracica), from the Azores. Zootaxa 2680:33–44Google Scholar
  61. Wisshak M, Form A, Jakobsen J, Freiwald A (2010) Temperate carbonate cycling and water mass properties from intertidal to bathyal depth (Azores). Biogeosciences 7:2379–2396CrossRefGoogle Scholar
  62. Wisshak M, Berning B, Jakobsen J, Freiwald A (2015) Temperate carbonate production: biodiversity of calcareous epiliths from intertidal to bathyal depths (Azores). Mar Biodivers 45:87–112CrossRefGoogle Scholar
  63. Woelkerling WJ, Irvine LM, Harvey A (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293CrossRefGoogle Scholar
  64. Zbyszewski G, da Veiga Ferreira O (1962) La faune Miocène 1078 de l’île de Santa Maria (Açores). Comun Serv Geol Port 46:247–289Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ana Cristina Rebelo
    • 1
    • 2
    • 3
    • 4
  • Michael W. Rasser
    • 4
  • Andreas Kroh
    • 5
  • Markes E. Johnson
    • 6
  • Ricardo S. Ramalho
    • 7
  • Carlos Melo
    • 3
    • 8
  • Alfred Uchman
    • 9
  • Björn Berning
    • 10
  • Luís Silva
    • 1
    • 2
  • Vittorio Zanon
    • 11
    • 12
  • Ana I. Neto
    • 1
    • 13
  • Mário Cachão
    • 14
  • Sérgio P. Ávila
    • 1
    • 2
    • 3
  1. 1.Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
  2. 2.CIBIO–Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoPólo dos Açores–Departamento de Biologia da Universidade dos AçoresPonta DelgadaPortugal
  3. 3.MPB–Marine PalaeoBiogeography Working Group of the University of the AzoresRua Mãe de DeusPortugal
  4. 4.SMNS–Staatliches Museum für Naturkunde StuttgartStuttgartGermany
  5. 5.Geologisch-Paläontologische AbteilungNaturhistorisches Museum WienViennaAustria
  6. 6.Department of GeosciencesWilliams CollegeWilliamstownUSA
  7. 7.School of Earth SciencesUniversity of BristolBristolUK
  8. 8.Departamento de GeociênciasUniversidade dos AçoresPonta DelgadaPortugal
  9. 9.Institute of Geological SciencesJagiellonian UniversityKrakówPoland
  10. 10.Oberösterreichisches Landesmuseum, Geowissenschaftliche SammlungenLeondingAustria
  11. 11.Centro de Vulcanologia e Avaliação de Riscos GeológicosUniversidade dos AçoresPonta DelgadaPortugal
  12. 12.Institut de Physique du Globe de ParisParis Cedex 05France
  13. 13.Grupo de Investigação em Ecologia Aquática de Sistemas Insulares do Grupo de Biodiversidade dos Açores, cE3c - Centro de Ecologia, Evolução e Alterações AmbientaisUniversidade dos AçoresPonta DelgadaPortugal
  14. 14.Instituto Dom LuizFaculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations