Advertisement

Facies

, 61:22 | Cite as

Toarcian ammonitico rosso facies from the South Iberian Paleomargin (Betic Cordillera, southern Spain): paleoenvironmental reconstruction

  • Matías Reolid
  • Pascual Rivas
  • Francisco J. Rodríguez-Tovar
Original Article

Abstract

The Toarcian ammonitico rosso facies were widespread in the Mediterranean Tethys (between 15 and 30°N latitude) in the North Gondwana Paleomargin (Apulian promontory and North African Margin) and southern Iberian Paleomargin (Betic Cordillera). These facies were associated with epi-oceanic slopes of a sedimentary swell-trough system related to the extensional phase of continental rifting. In the Median Subbetic (southern Iberian Paleomargin), ammonitico rosso facies show a progressive change through the Toarcian on the hemipelagic swells after the fragmentation of a carbonate platform. During the latest Pliensbachian to the Bifrons Zone (middle Toarcian), sedimentation was dominated by epi-oceanic limestone and marl with a high influence of neighboring shallow-water environments represented by common turbidite–tempestite beds (with foraminifera and ooids). Microfossils and trace fossils provide no evidence of oxygen-restricted conditions. In the Gradata Zone (middle Toarcian), the ammonitico rosso facies appear (red nodular limestone and marly-limestone rich in the trace fossils Phycodes, Planolites, Thalassinoides, and Chondrites). Progressively more pelagic conditions and a restricted influence of emergent lands and carbonate platforms are reflected by the reduced input of turbidite–tempestite beds and increase of ammonitellas and radiolaria. A sea-level fall affected the hemipelagic swell during the middle–late Toarcian and favored sediment-winnowing by currents, with subsequent nodulation. The combined action of burrowing, compaction, and dissolution controlled nodulation, which ranges from diffuse nodules to sharp-edged nodules. The sedimentation rate conditioned the time available for nodule growth, the migration of the Ca2+ and HCO3 precipitation horizon, and the degree of nodulation (from horizons with diffuse-edged nodules to semi-continuous to continuous layers formed by the coalescence of sharp-edged nodules).

Keywords

Microfossils Trace fossils Pelagic swell Ammonitico rosso Subbetic Lower Jurassic 

Notes

Acknowledgments

The research activity was supported by Projects RYC-2009-04316 (Ramón y Cajal Program), CGL2012-33281 (Secretaría de Estado de I + D + I, Spain), RNM-3715 and P11-RNM-7408 (Junta de Andalucía), and UJA2011/12/17 (Universidad de Jaén-Caja Rural de Jaén), and the research groups RNM-178, RNM-200 (Junta de Andalucía). Authors warmly acknowledges Antonio Piedra (Laboratory of Geology, Universidad de Jaén), whose help in sample preparation (polished slabs and thin-sections) was very helpful. The authors thank the editor Maurice Tucker and two anonymous reviewers for constructive comments that improved the manuscript. We thank Jean Sanders for reviewing the grammar.

References

  1. Aberhan M (2001) Bivalve palaeobiogeography and the Hispanic Corridor: time of opening and effectiveness of a proto-Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 165:375–394CrossRefGoogle Scholar
  2. Aberhan M (2002) Opening of the Hispanic Corridor and Early Jurassic bivalve biodiversity. Geol Soc Lond Spec Publ 194:1–11CrossRefGoogle Scholar
  3. Bailey TR, Rosenthal Y, McArthur JM, van de Schootbrugge B, Thirlwall MF (2003) Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an oceanic anoxic event. Earth Planet Sci Lett 212:307–320CrossRefGoogle Scholar
  4. Bartolini A, Nocchi M, Baldanza A, Parisi G (1992) Benthic life during the Early Toarcian Anoxic Event in the Southwestern Tethyan Umbria-Marche Basin, Central Italy. Studies in Benthic Foraminifera, Benthos’90, Tokai University Press, Sendai, pp 323–338Google Scholar
  5. Berner RA (1969) Goethite stability and the origin of red beds. Geochim Cosmochim Acta 33:267–273CrossRefGoogle Scholar
  6. Bodin S, Mattioli E, Frölich S, Marshall JD, Boutib L, Lahsini S, Redfern J (2010) Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 297:377–390CrossRefGoogle Scholar
  7. Bosellini A (1973) Modello geodinamico e paleotettonico delle Alpi Meridionali durante il Giurassico–Cretacico. Sue possibili applicazioni agli Appennini. In: Accordi B (ed) Moderne vedute sulla Geologia dell’Appennino. Accademia Nazionale Lincei, Quaderni 183:163–205Google Scholar
  8. Boulila S, Galbrum B, Huret E, Hinnov LA, Rouget I, Gardin S, Bartolini A (2014) Astronomical calibration of the Toarcian stage: implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth Planet Sci Lett 386:98–111CrossRefGoogle Scholar
  9. Braga JC (1983) Ammonites del Domerense de la Zona Subbética (Cordilleras Béticas, Sur de España). PhD Thesis Universidad Granada, pp 410Google Scholar
  10. Braga JC, Comas MC, Delgado F, García-Hernández M, Jiménez AP, Linares A, Rivas P, Vera JA (1981) The Liassic Rosso Ammonitico Facies in the Subbetic Zone (Spain). Genetic consideration. In: Farinacci A, Elmi S (eds) Rosso Ammonitico symposium proceedings. Tecnocienza, Rome, pp 61–76Google Scholar
  11. Caracuel JE, Monaco P, Olóriz F (1997) Eventos de depósito y colonización del substrato en facies ammonitico rosso (Subbético externo, Kimmeridgiense). Geogaceta 21:63–65Google Scholar
  12. Caracuel JE, Monaco P, Olóriz F (2000) Taphonomic tools to evaluate sedimentation rates and stratigraphic completeness in rosso ammonitico facies (epioceanic Tethyan Jurassic). Riv Ital Paleontol Stratigr 106:353–368Google Scholar
  13. Cecca F, Fourcade E, Azéma J (1992) The disappearance of the “Ammonitico Rosso”. Palaeogeogr Palaeoclimatol Palaeoecol 99:55–70CrossRefGoogle Scholar
  14. Clari PA, Martire L (1996) Interplay of cementation, mechanical compaction and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (middle–upper Jurassic, northeastern Italy). J Sediment Res 66:447–458Google Scholar
  15. Clari PA, Marini P, Pastorini M, Pavia G (1984) Il Rosso Ammonitico Inferiore (Baiociano–Calloviano) nei nonti lessini settentrionali (Verona). Riv Ital Paleontol Stratigr 90:15–86Google Scholar
  16. Coimbra R, Immenhauser A, Olóriz F (2009) Matrix micrite δ13C reveals synsedimentary marine lithification in Upper Jurassic ammonitico rosso limestones (Betic Cordillera, SE Spain). Sediment Geol 219:332–348CrossRefGoogle Scholar
  17. Comas MC (1978) Sobre la geología de los Montes Orientales: Sedimentación paleogeográfica desde el Jurásico al Mioceno inferior (Zona Subbética, Andalucía). PhD Thesis, Universidad Bilbao, pp 323Google Scholar
  18. Comas MC, Olóriz F, Tavera JM (1981) The red nodular limestones (Ammonitico Rosso) and associated facies: a key for settling slopes or swell areas in the Subbetic Upper Jurassic submarine topography (southern Spain). In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 113–136Google Scholar
  19. Coudray J, Michel D (1981) Analyse sédimentologique des “calcaires noduleux” qui encadrent les radiolarites du dinantien de la Montagne Noire (France) et apport des donnes expérimentales a la compréhension de leur genèse. In: Farinacci A, Elmi S (eds) Proceedings rosso ammonitico symposium. Tecnoscienza, Rome, pp 149–167Google Scholar
  20. D’Argenio B (1974) Le Piattaforme Carbonatiche Periadriatiche. Una rassegna di problemi nel quadro geodinámico del’area mediterranea. Memorie della Società Geologica Italiana 13:1–28Google Scholar
  21. Danise S, Twichett RJ, Little CTS, Clémence ME (2013) The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLoS One 8:e56255CrossRefGoogle Scholar
  22. Dera G, Pellenard P, Neige P, Deconinck JF, Puceat E, Dommergues JL (2009) Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr Palaeoclimatol Palaeoecol 271:39–51CrossRefGoogle Scholar
  23. Dera G, Brigaud B, Monna F, Laffont R, Puceat E, Deconinck JF, Pellenard P, Joachimski MM, Durlet C (2011) Climatic ups and downs in a disturbed Jurassic world. Geology 39:215–218CrossRefGoogle Scholar
  24. Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sborshchikov IM, Boulin J, Sorokhtin O, Geyssant J, Lepvrier C, Biju-Duval B, Sibuet JC, Savostin LA, Westphal M, Lauer JP (1985) Presentation de 9 cartes paléogéographiques a 1:20.000.000 s’étendent de l’Atlantique au Pamir pour la période du Lias à l’actuel. Bulletin de la Societé Géologique de France 8:635–652Google Scholar
  25. El Kadiri K (2002) “Tectono-eustatic sequences” of the Jurassic successions from the Dorsale Calcaire (Internal Rif, Morocco): evidence from an eustatic and tectonic scenario. Geol Romana 36:71–103Google Scholar
  26. Eller MG (1981) The red chalk of Eastern England: a Cretaceous analogue of rosso ammonitico. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 207–231Google Scholar
  27. Elmi S (1981a) Classification typologique et genetique des ammonitico-rosso et des facies noduleux ou grumeleux: essai de synthese. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 233–249Google Scholar
  28. Elmi S (1981b) Sédimentation rythmique et organisation séquentielle dans les ammonitico-rosso et les facies associes du Jurassique de la Méditerranée Occidentale. Interpretation des grumeaux et des nodules. In: Farinacci A, Elmi S (eds) Rosso ammonitico symposium proceedings. Tecnocienza, Rome, pp 251–299Google Scholar
  29. Elmi S, Almeras Y (1984) Physiography, palaeotectonics and palaeoenvironments as controls of changes in ammonite and brachiopod communities (an example from the Early and Middle Jurassic of Western Algeria). Palaeogeogr Palaeoclimatol Palaeoecol 47:347–360CrossRefGoogle Scholar
  30. Elmi S, Ameur M (1984) Quelques environnements des facies noduleux mésogées. Geol Romana 23:13–22Google Scholar
  31. Ettaki M, Chellaï EH (2005) Le Toarcien inférieur du Haut Atlas de Todrha-Dadès (Maroc): sedimentologie et lithostratigraphie. C R Géosci 337:814–823CrossRefGoogle Scholar
  32. Ettaki M, Chellaï EH, Milhi A, Sadki D, Boudchiche L (2000) Le passage Lias moyen-Lias supérieur dans la région de Todrha-Dadès: événements biosédimentaires et géodynamiques (Haut Atlas central, Maroc). C R Acad Sci (Paris) 331:667–674Google Scholar
  33. Flügel E (1982) Microfacies analysis of limestones. Springer, Berlin, pp 633Google Scholar
  34. Flügel E (2004) Microfacies of carbonate rocks. Springer, Heidelberg, pp 976CrossRefGoogle Scholar
  35. Fohrer B, Samankassou E (2005) Paleoecological control of ostracod distribution in a Pennsylvanian Auernig cyclothem of the Carnic Alps, Austria. Palaeogeogr Palaeoclimatol Palaeoecol 225:317–330CrossRefGoogle Scholar
  36. Frimmel A, Oschmann W, Schwark L (2004) Chemostratigraphy of the Posidonian Black Shale, SW Germany I. Influence of sea-level variation on organic facies evolution. Chem Geol 206:199–230CrossRefGoogle Scholar
  37. Funk H, Oberhanski R, Pfiffner A, Schmid S, Wildi W (1987) The evolution of the Northern Margin of Tethys in Eastern Switzerland. Episodes 10:102–106Google Scholar
  38. Fürsich FT (1973) Thalassinoides and the origin of nodular limestone in the Corallian Beds (Upper Jurassic) of southern England. Neues Jahrb Geol Palaontol Abh 3:136–156Google Scholar
  39. Fürsich FT (1979) Genesis, environments, and ecology of Jurassic hardgrounds. Neues Jahrb Geol Palaontol Abh 158:1–163Google Scholar
  40. Galbrun B, Mouterde R, Baudin F, Danelian T, Dercourt J (1994) L’Ammonitico Rosso Toarcien de la zone ionenne (Epire, Grèce): magnétostratigraphie et biostratigraphie. Eclogae Geol Helv 87:91–111Google Scholar
  41. García-Hernández M, López-Garrido AC, Rivas P, Sanz de Galdeano C, Vera JA (1980) Mesozoic paleogeographic evolution in the external zones of the Betic Cordillera (Spain). Geol Mijnbouw 59:155–168Google Scholar
  42. García-Hernández M, Lupiani E, Vera JA (1987) La sedimentación liásica en el sector central del Subbético medio: registro de la evolución de un rift intracontinental. Acta Geológica Hispánica 21–22:329–337Google Scholar
  43. García-Hernández M, López-Garrido AC, Martín-Algarra A, Molina JM, Ruiz-Ortiz PA, Vera JA (1989) Las discontinuidades mayores del Jurásico de las Zonas Externas de las Cordilleras Béticas: análisis e interpretación de los ciclos sedimentarios. Cuad Geol Ibérica 13:35–52Google Scholar
  44. Gómez JJ, Fernández-López SR (1994) Condensation processes in shallow platforms. Sediment Geol 92:147–159CrossRefGoogle Scholar
  45. Gong Y (2001) Trace fossils from the flysch sequences of the Silurian, Carboniferous and Triassic of the Tianshan and Kunlun-Qinling orogenic belts of northwestern China. Acta Palaeontol Sin 40:177–188Google Scholar
  46. González-Donoso JM, Linares A, López-Garrido AC, Vera JA (1971) Bosquejo estratigráfico del Jurásico de las Cordilleras Béticas. Cuad Geol Ibérica 2:55–90Google Scholar
  47. Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Hallam A (1967) Sedimentology and palaeogeographic significance of certain red limestones and associated beds in the Lias of the Alpine region. Scott J Geol 3:195–220CrossRefGoogle Scholar
  49. Hallam A (1988) A reevaluation of Jurassic Eustasy in the light of new data and the revised Exxon curve. Soc Econ Paleontol Mineral Spec Publ 42:261–273Google Scholar
  50. Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37CrossRefGoogle Scholar
  51. Han Y, Pickerill RK (1994) Phycodes templus isp. nov. from the Lower Devonian of northwestern New Brunswick, eastern Canada. Atl Geol 30:37–46Google Scholar
  52. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea-levels from the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  53. Helm C (2005) Riffe und fazielle Entwicklung der florigemma-Bank (Korallenoolith, Oxfordium) im Süntel und östlichen Wesergebirge (NW-Deustchland). Geologische Beiträge Hannover 7:1–39Google Scholar
  54. Hermes JJ (1978) The stratigraphy of the Subbetic and Southern Prebetic of the Velez Rubio–Caravaca area and its bearing on transcurrent faulting in the Betic Cordilleras of southern Spain. Kon Ned Akad Wet Proc 81:1–54Google Scholar
  55. Hermoso M, Pellenard P (2014) Continental weathering and climatic changes inferred from clay mineralogy and paired carbon isotopes across the early to middle Toarcian in the Paris Basin. Palaeogeogr Palaeoclimatol Palaeoecol 399:385–393CrossRefGoogle Scholar
  56. Hernández-Molina FJ, Larter RD, Rebesco M, Maldonado A (2006) Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: stratigraphic evidence from a contourite sedimentary tail. Mar Geol 228:93–116CrossRefGoogle Scholar
  57. Jacquin TH, De Graciansky PC (1998) Major transgressive/regressive cycles: the stratigraphic signature of European basin development. In: De Graciansky PC, Hardenbol J, Jacquin TH, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Spec Publ 60:15–29Google Scholar
  58. Jenkyns HC (1971) The genesis of condensed sequences in the Tethyan Jurassic. Lethaia 4:327–352CrossRefGoogle Scholar
  59. Jenkyns HC (1974) Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model. In: Hsü KJ, Jenkyns HC (eds) Pelagic sediments on lands and under the sea. Blackwell, London, pp 249–271Google Scholar
  60. Jenkyns HC, Senior JR (1991) Geological evidence for intra-Jurassic faulting in the Wessex Basin and its margins. J Geol Soc 148:245–260CrossRefGoogle Scholar
  61. Jiménez AP (1986) Estudio paleontológico de los ammonites del Toarciense inferior y medio de las Cordilleras Béticas (Dactylioceratidae e Hildoceratidae). PhD Thesis, Universidad de Granada, pp 252Google Scholar
  62. Jiménez AP, Rivas P (1979) El Toarcense en la Zona Subbética. Cuadernos de Geología 10:397–411Google Scholar
  63. Jiménez AP, Jiménez de Cisneros C, Rivas P, Vera JA (1996) The early Toarcian Anoxic Event in the westernmost Tethys (Subbetic): paleogeographic and paleobiogeographic significance. J Geol 104:399–416CrossRefGoogle Scholar
  64. Kafousia N, Karakitsios V, Mattioli E, Kenjo S, Jenkyns HC (2014) The Toarcian Oceanic Anoxic Event in the Ionian Zone, Greece. Palaeogeogr Palaeoclimatol Palaecoecol 393:135–145CrossRefGoogle Scholar
  65. Kennedy WJ, Garrison RE (1975) Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22:311–386CrossRefGoogle Scholar
  66. Krencker FN, Bodin S, Suan G, Heimhofer U, Kabiri L, Immenhauser A (2015) Toarcian extreme warmth led to tropical cyclone intensification. Earth Planet Sci Lett 425:120–130CrossRefGoogle Scholar
  67. Linares A, Rivas P (1971) Metacronía de Ammonitico Rosso Liásico en la Zona Subbética. Cuad Geol Ibérica 2:183–204Google Scholar
  68. Mamet B, Préat A (2006) Jurassic microfacies, Rosso Ammonitico limestone, Subbetic Cordillera, Spain. Rev Esp Micropaleontol 38:219–228Google Scholar
  69. Mángano MG, Carmona NB, Buatois LA, Muñiz Guinea F (2005) A new ichnospecies of Arthrophycus from the Upper Cambrian–Lower Tremadocian of Northwest Argentina: implications for the Arthrophycid lineage and potential in ichnostratigraphy. Ichnos 12:179–190CrossRefGoogle Scholar
  70. Mariotti N, Schiavinotto F (1977) Contribution to the paleontology of Toarcian “Rosso Ammonitico” in the umbro-marchigiana facies: foraminifers and non-ammonitiferous fauna from Monte la Pelosa (Polino, Terni). Geol Romana 16:285–307Google Scholar
  71. Marok A, Reolid M (2012) Lower Jurassic sediments from the Rhar Roubane Mountains (Western Algeria): stratigraphic precisions and synsedimentary block-faulting. J Afr Earth Sc 76:50–65CrossRefGoogle Scholar
  72. McArthur JM, Algeo TJ, van de Schootbrugge B, Li Q, Howarth RJ (2008) Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23:PA4217Google Scholar
  73. McLaughlin PI, Brett CE (2004) Sequence stratigraphy and stratinomy of marine hardgrounds: examples from the Middle Paleozoic of Eastern Laurentia. Geological Society of America, Abstracts with programs 36:110Google Scholar
  74. Miller W III (2001) Thalassinoides-Phycodes compound burrow systems in Paleocene deep-water limestone, Southern Alps of Italy. Palaeogeogr Palaeoclimatol Palaecoecol 170:149–156CrossRefGoogle Scholar
  75. Monaco P, Trecci T (2014) Ichnocoenosis in the Macigno turbidite basin system, Lower Miocene, Trasimero (Umbrian Apennines, Italy). Ital J Geosci 133:116–130CrossRefGoogle Scholar
  76. Monaco P, Nocchi M, Ortega-Huertas M, Palomo I, Martínez F, Chiavini G (1994) Depositional trends in the Valdorbia section (Central Italy) during the Early Jurassic, as revealed by micropaleontology, sedimentology and geochemistry. Eclogae Geol Helv 87:157–223Google Scholar
  77. Monaco P, Caracuel JE, Giannetti A, Soria JM, Yébenes A (2007) Thalassinoides and Ophiomorpha as cross-facies trace fossils of crustaceans from shallow-to-deep-water environments: Mesozoic and Tertiary examples from Italy and Spain. In: 3rd symposium on Mesozoic and Cenozoic Decapod Crustaceans, Museo di Storia Naturale di Milano, 79–82Google Scholar
  78. Mouterde R, Linares A (1960) Nuevo yacimiento fosilífero del Lías superior, cerca de Iznalloz (Provincia de Granada, Cordillera Bética). Notas y Comunicaciones IGME 58:101–104Google Scholar
  79. Müller J, Fabricius F (1974) Magnesian-calcite nodules in the Ionian deep-sea: an actualistic model for the formation of some nodular limestones. In: Hsü KJ, Jenkyns HC (eds) Pelagic sediments on land and under the sea. Blackwell, London, pp 235–247Google Scholar
  80. Mullins HT, Neumann AC, Wilber RJ, Boardman MR (1980) Nodular carbonate sediment on Bahamian slopes: possible precursor to nodular limestones. J Sediment Petrol 50:117–131Google Scholar
  81. Neto de Carvalho C (2008) Mais recente e mais profundo: Treptichnus (Phycodes) pedum (Seilacher) no Devónico Inferior de Barrancos, Zona de Ossa Morena (Portugal). Comunicaçoes Geológicas 95:167–171Google Scholar
  82. Nieto LM, Ruiz-Ortiz PA, Rey J, Benito MI (2008) Strontium-isotope stratigraphy as a constraint on the age of condensed levels: examples from the Jurassic of the Subbetic Zone (southern Spain). Sedimentology 55:1–29Google Scholar
  83. Ogg J, Hinnov LA (2012) The Jurassic period. In: Gradstein F, Ogg J, Ogg G, Smith D (eds) A geologic time scale 2012, Chap 26. Elsevier, Amsterdam, pp 731–791Google Scholar
  84. Olóriz F, Reolid M, Rodríguez-Tovar FJ (2012) Palaeogeography and relative sea-level history forcing eco-sedimentary contexts in Late Jurassic epicontinental shelves (Prebetic Zone, Betic Cordillera): an ecostratigraphic approach. Earth Sci Rev 111:154–178CrossRefGoogle Scholar
  85. Osete ML, Gómez JJ, Pavón-carrasco FJ, Villalaín JJ, Palencia A, Ruiz-Martínez VC, Heller F (2011) The evolution of the Iberia during the Jurassic from paleomagnetic data. Tectonophysics 502:105–120CrossRefGoogle Scholar
  86. Palmer T, Wilson M (2004) Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia 37:417–427CrossRefGoogle Scholar
  87. Palomo I (1987) Mineralogía y geoquímica de sedimentos pelágicos del Jurásico inferior de las Cordilleras Béticas (SE de España). PhD Thesis Universidad de Granada, pp 345Google Scholar
  88. Parisi G, Ortega-Huertas M, Nocchi M, Palomo I, Monaco P, Martínez F (1996) Stratigraphy and geochemical anomalies of the Early Toarcian oxygen-poor interval in the Umbria Marche Apennines (Italy). Geobios 29:469–484CrossRefGoogle Scholar
  89. Pereira R, Alves TM (2012) Tectono-stratigraphic signature of multiphased rifting on divergent margins (deep-offshore southwest Iberia, North Atlantic). Tectonics 31:TC4001Google Scholar
  90. Petrash DA, Lalonde SV, Gingras MK, Konhauser KO (2010) A surrogate approach to studying the chemical reactivity of burrow mucous lining in marine sediments. Palaios 26:594–600CrossRefGoogle Scholar
  91. Reolid M (2014) Stable isotopes on foraminifera and ostracods for interpreting incidence of the Toarcian Oceanic Anoxic Event in Westernmost Tethys: role of water stagnation and productivity. Palaeogeogr Palaeoclimatol Palaeoecol 395:77–91CrossRefGoogle Scholar
  92. Reolid M, Nagy J, Rodríguez-Tovar FJ, Olóriz F (2008) Foraminiferal assemblages as palaeoenvironmental bioindicators in Late Jurassic epicontinental platforms: relation with trophic conditions. Acta Palaeontol Pol 53:706–722CrossRefGoogle Scholar
  93. Reolid M, Molina JM, Löser H, Navarro V, Ruiz-Ortiz PA (2009) Coral biostromes of the Middle Jurassic from the Subbetic (Betic Cordillera, southern Spain): facies, coral taxonomy, taphonomy and palaeoecology. Facies 55:575–593CrossRefGoogle Scholar
  94. Reolid M, Nieto LM, Rey J (2010) Taphonomy of cephalopod assemblages from Middle Jurassic hardgrounds of pelagic swells (South-Iberian palaeomargin, Western Tethys). Palaeogeogr Palaeoclimatol Palaeoecol 292:257–271CrossRefGoogle Scholar
  95. Reolid M, Rodríguez-Tovar FJ, Marok A, Sebane A (2012) The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North African Paleomargin): role of anoxia and productivity. GSA Bull 124:1646–1664CrossRefGoogle Scholar
  96. Reolid M, Chakiri S, Bejjaji Z (2013a) Adaptative strategies of the Toarcian benthic foraminiferal assemblages from the Middle Atlas (Morocco): palaeoecological implications. J Afr Earth Sci 84:1–12CrossRefGoogle Scholar
  97. Reolid M, Nieto LM, Sánchez-Almazo IM (2013b) Caracterización geoquímica de facies pobremente oxigenadas en el Toarciense inferior (Jurásico inferior) del Subbético Externo. Revista de la Sociedad Geológica de España 26:69–84Google Scholar
  98. Reolid M, Marok A, Sebane A (2014a) Foraminiferal assemblages and geochemistry for interpreting the incidence of Early Toarcian environmental changes in North Gondwana palaeomargin (Traras Mountains, Algeria). J Afr Earth Sci 95:105–122CrossRefGoogle Scholar
  99. Reolid M, Mattioli E, Nieto LM, Rodríguez-Tovar FJ (2014b) The Early Toarcian Oceanic Anoxic Event in the external subbetic (South Iberian Palaeomargin, Westernmost Tethys): geochemistry, nannofossils and ichnology. Palaeogeogr Palaeoclimatol Palaeoecol 411:79–94CrossRefGoogle Scholar
  100. Rivas P (1972) Estudio paleontológico-estratigráfico del Lías (Sector Central de las Cordilleras Béticas). PhD Thesis, Universidad de Granada, Short Publication 29:77 ppGoogle Scholar
  101. Rodríguez-Tovar FJ, Reolid M (2013) Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: influence of the regional context on a global phenomenon. Bull Geosci 88:697–712CrossRefGoogle Scholar
  102. Rodríguez-Tovar FJ, Uchman A (2010) Ichnofabric evidence for the lack of bottom anoxia during the Lower Toarcian Oceanic Anoxic Event in the Fuente de la Vidriera section, Betic Cordillera, Spain. Palaios 25:576–587CrossRefGoogle Scholar
  103. Röhl HJ, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) The Posidonian Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52CrossRefGoogle Scholar
  104. Rozic B, Smuc A (2011) Gravity-flow deposits in the Toarcian Perbla Formation (Slovenian Basin, NW Slovenia). Rivista Italiana di Paleontologie e Stratigrafia 117:283–294Google Scholar
  105. Ruebsam W, Münzberger P, Schwark L (2014) Chronology of the Early Toarcian Environmental crisis in the Lorraine Sub-Basin (NE Paris Basin). Earth Planet Sci Lett 404:273–282CrossRefGoogle Scholar
  106. Sabatino N, Neri R, Bellanca A, Jenkyns HC, Baudin F, Parisi G, Masetti D (2009) Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56:1307–1328CrossRefGoogle Scholar
  107. Sælen G, Tyson RV, Telnæs N, Talbot MR (2000) Contrasting watermass conditions during the deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK. Palaeogeogr Palaeoclimatol Palaeoecol 163:163–196CrossRefGoogle Scholar
  108. Sandoval J, Bill M, Aguado R, O’Dogherty L, Rivas P, Morard A, Guex J (2012) The Toarcian in the Subbetic basin (southern Spain): bio-events (ammonite and calcareous nannofossils) and carbon-isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 342–343:40–63CrossRefGoogle Scholar
  109. Santantonio M (1993) Facies associations and evolution of pelagic carbonate platform/basin systems: examples from the Italian Jurassic. Sedimentology 40:1039–1067CrossRefGoogle Scholar
  110. Santantonio M (1994) Pelagic carbonate platforms in the geologic record: their classification, and sedimentary and paleotectonic evolution. AAPG Bull 78:122–141Google Scholar
  111. Savrda CE (2012) Chalk and related deep-marine carbonates. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments, development in Sedimentology 64:777–806, Elsevier, AmsterdamGoogle Scholar
  112. Seyfried H (1978) Der subbetische Jura von Murcia (Südest-Spanien). Geol Jahrbuch 29:3–201Google Scholar
  113. Seyfried H (1979) Ensayo sobre el significado paleogeográfico de los sedimentos del Jurásico de las Cordilleras Béticas Orientales. Cuadernos de Geología 10:317–348Google Scholar
  114. Sibuet JC, Rouzo S, Srivastava S (2012) Plate tectonic reconstructions and paleogeographic maps of the central and North Atlantic oceans. Can J Earth Sci 49:1395–1415CrossRefGoogle Scholar
  115. Sohn IG (1960) Paleozoic species of Bairdia and related genera—revision of some Paleozoic ostracod genera. U.S. Geological Survey Professional Paper 330-B:107–160Google Scholar
  116. Soussi M, Ben Ismail MH (2000) Platform collapse and pelagic seamount facies: Jurassic development of central Tunisia. Sediment Geol 133:93–113CrossRefGoogle Scholar
  117. Soussi M, Boughdiri M, Enay R, Mangold C (1998) Ammonitico Rosso-like facies of Late Toarcian age in the northwestern Tunisian Atlas belt: consequences for correlations and palaeogeography. C R Acad Sci Ser IIA Earth Planet Sci 327:135–140Google Scholar
  118. Soussi M, Enay R, Mangold C, Turki MM (2000) The Jurassic events and their sedimentary and stratigraphic records on the Southern Tethyan margin in Central Tunisia. Mémoires Musée National d’Histoire Naturelle, Paris 182:57–92Google Scholar
  119. Suan G, Rolleau L, Mattioli E, Suchéras-Marx B, Rousselle B, Pittet B, Vincent P, Martin JE, Léna A, Spangenberg JE, Föllmi KB (2013) Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, France. Geol Mag 150:728–742CrossRefGoogle Scholar
  120. Uchman A, Tchoumatchenco P (2003) A mixed assemblage of deep-sea and shelf trace fossils from the Lower Cretaceous (Valanginian) Kamchia Formation in the Troyan Region, Central Fore-Balkan, Bulgaria. Ann Soc Geol Pol 73:27–34Google Scholar
  121. Vera JA (1988) Evolución de los sistemas de depósito en el Margen Ibérico de la Cordillera Bética. Revista de la Sociedad Geológica de España 1:373–391Google Scholar
  122. Vera JA (2001) Evolution of the South Iberian Continental Margin. In: Ziegler PA Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum National d’Histoire Naturelle 186:109–143Google Scholar
  123. Vogel K, Bundschuh M, Glaub I, Hofmann K, Radtke G, Schmidt H (1995) Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry. Neues Jahrb Geol Palaontol Abh 195:49–61CrossRefGoogle Scholar
  124. Winterer EL, Bosellini A (1981) Subsidence and sedimentation on Jurassic passive Continental Margin, Southern Alps, Italy. AAPG Bull 65:394–421Google Scholar
  125. Yelles-Chaouche AK, Ait-Ouali R, Bracène R, Derder MEM, Djellit H (2001) Chronologie de l’ouverture du bassin des Ksour (Atlas Saharien, Algérie) au début du Mésozoïque. Bulletin de la Société Géologique de France 172:285–293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Matías Reolid
    • 1
  • Pascual Rivas
    • 2
  • Francisco J. Rodríguez-Tovar
    • 2
  1. 1.Departamento de GeologíaUniversidad de JaénJaénSpain
  2. 2.Departamento de Estratigrafía y PaleontologíaUniversidad de GranadaGranadaSpain

Personalised recommendations