, Volume 60, Issue 4, pp 963–986 | Cite as

Age, facies, and geometry of the Sandbian/Katian (Upper Ordovician) pelmatozoan-bryozoan-receptaculitid reefs of the Vasalemma Formation, northern Estonia

Original Article


The Vasalemma Formation (early Katian, Late Ordovician) of northern Estonia consists of a succession of biodetrital grainstones up to 15 m thick with numerous intercalated reef bodies, which reach diameters of more than 50 m. Four dominant facies types are distinguished within the reef core limestones: (1) a bryozoan framestone—bindstone, (2) an echinoderm bindstone, (3) a receptaculitid-bryozoan-microbial framestone, and (4) a tabulate bafflestone. A linking theme between the different reef-core limestones is the presence of clotted microbial bindstone, which in some places contains spicules. Except for the tabulate bafflestone, all facies types occur in the youngest and oldest intervals of reef growth. Generally, a tendency can be observed with a dominance of echinoderm framestone low in the formation and at the base of individual reefs, towards a more receptaculitid dominated facies at the top of the formation. The reefs developed in a narrow, ca. 20-km-long and max. 5-km-wide band on a shallow NE–SW-directed platform in the central part of the North Estonian Confacies Belt. Reef growth can be constrained toward the latest Keila age, representing the rising limb and the peak interval of the Guttenberg Isotopic Carbon Excursion (GICE). Reef termination falls within a second-order sea-level lowstand, the Frognerkilen Lowstand Event, which led to partial subaerial exposure of the reefs. The dead reefs subsequently and rapidly drowned during the Nakkholm Drowning Event at the Oandu/Rakvere Stage. This timing is nearly equivalent to a phase of enhanced reef development elsewhere in Baltica and probably is related to locally increased nutrient availability during the GICE interval.


Reef Ordovician Chemostratigraphy GICE 



The general support of Mare Isakar from Tartu University, and Ursula Toom, Mari-Ann Mõtus and Jaak Nolvak from Tallinn University of Technology during fieldwork is highly acknowledged. We thank Michael Joachimski and Daniele Lutz (Erlangen) for running the carbon isotope samples in the stable isotope lab at GeoZentrum Nordbayern (Erlangen). This paper is a result of the DFG project “Processes of reef diversification during the Ordovician Radiation” and BK is indebted for the support by the Deutsche Forschungsgemeinschaft (grant KR 2095/7-1). LH was supported by the Estonian Research Council (projects SF0140020s08). LH is grateful to Mare Kukk and Maie Pärnamäe, Tallinn, for their help during work with the reports of the Estonian Geological Survey. OL is also very grateful for financial support of the core studies in central Sweden by the Deutsche Forschungsgemeinschaft (DFG project LE 867/8-1) in the frame of the International Continental Scientific Drilling Program (SPP 1006) and Swedish Scientific Drilling Program (SSDP). The reviews of an earlier version of the manuscript by Leho Ainsaar (Tartu University) and Gregory E. Webb (University of Queensland) helped significantly to improve the quality of the paper and we are grateful of their constructive critics. This paper is a contribution to the IGCP 591 project “The Early to Middle Paleozoic Revolution”.


  1. Adachi N, Ezaki Y, Liu J (2012) The oldest bryozoan reefs: a unique early Ordovician skeletal framework construction. Lethaia 45:14–23CrossRefGoogle Scholar
  2. Ainsaar L (1991) Use of sedimentary cycles for detailed correlation of carbonate sections: an example of the Pääsküla Member (DIIP), Keila Formation, the Viruan of North Estonia. Acta et Commentationes Universitatis Tartuensis 934:3–12 [in Russian, with English summary]Google Scholar
  3. Ainsaar L, Meidla T (2001) Facies and stratigraphy of the Middle Caradoc mixed siliciclastic-carbonate sediments in Eastern Baltoscandia. Proceedings of the Estonian Academy of Sciences, Geology 50:5–23Google Scholar
  4. Ainsaar L, Meidla T, Martma T (1999) Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia. Geological Magazine 136(1):49–62 http://geolmag.geoscienceworld.org/cgi/content/abstract/136/1/49
  5. Ainsaar L, Meidla T, Martma T (2004) The Middle Caradoc Facies and Faunal Turnover in the Late Ordovician Baltoscandian palaeobasin. Palaeogeogr Palaeoclimatol Palaeoecol 210(2–4):119–133 New Insights into Late Ordovician Climate, Oceanography, and TectonicsCrossRefGoogle Scholar
  6. Ainsaar L, Kaljo D, Martma T, Meidla T, Männik P, Nõlvak J, Tinn O (2010) Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeogeogr Palaeoclimatol Palaeoecol 294(3–4):189–201 http://www.sciencedirect.com/science/article/pii/S0031018210000040
  7. Akima H (1978) A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans Math Softw 4:148–164CrossRefGoogle Scholar
  8. Akima H, Gebhardt A, Petzold T, Maechler M (2013) akima: interpolation of irregularly spaced data. R package version 0.5-11. http://CRAN.R-project.org/package=akima
  9. Barankina IF, Hein HA, Barankin VA, Lugus EA (1963) Report on detailed geological investigations carried out in the localities of Vasalemma limestones of Padise-Paemurru (localities No 1 and No 2) of Estonian SSR in 1958–1959 years, vol 3, 4. Geological Survey of Estonia, Tallinn [In Russian]Google Scholar
  10. Barankina IF, Jürgenson VJ, Jõgi T (1971) Report on geological investigations carried out in the locality of the Vasalemma limestones of Estonian SSR of 1970–1971 years. Geological Survey of the Council of Ministers of ESSR. Group of the building limestones, vols 1, 2, 4. Geological Survey of Estonia, Tallinn. [In Russian]Google Scholar
  11. Bergström SM, Schmitz B, Saltzman MR, Huff WD (2010a) The Upper Ordovician Guttenberg d13C excursion (GICE) in North America and Baltoscandia: occurrence, chronostratigraphic significance, and paleoenvironmental relationships. Geol Soc Am Spec Pap 466:37–67CrossRefGoogle Scholar
  12. Bergström SM, Schmitz B, Young SA, Bruton DL (2010b) The d13C chemostratigraphy of the Upper Ordovician Mjøsa Formation at Furuberget near Hamar, southeastern Norway: Baltic, Trans-Atlantic and Chinese relations. Norw J Geol 90:65–78Google Scholar
  13. Bergström SM, Agematsu S, Schmitz B (2010c) Global Upper Ordovician correlation by means of δ13C chemostratigraphy: implications of the discovery of the Guttenberg δ13C excursion (GICE) in Malaysia. Geol Mag 147:641–651CrossRefGoogle Scholar
  14. Bergström SM, Schmitz B, Young SA, Bruton DL (2011a) Lower Katian (Upper Ordovician) d13C chemostratigraphy, global correlation and sea-level changes in Baltoscandia. GFF 133:31–47 http://dx.doi.org/10.1080/11035897.2011.557162
  15. Bergström SM, Calner M, Lehnert O, Noor A (2011b) A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 1. Stratigraphical review with regional comparisons, GFF 133:149–171 http://dx.doi.org/10.1080/11035897.2011.622049
  16. Bergström SM, Lehnert O, Calner M, Joachimski MM (2012) A new upper Middle Ordovician-Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 2. Significance of δ13C chemostratigraphy. GFF 134(1):39–63CrossRefGoogle Scholar
  17. Calner M, Lehnert O, Joachimski M (2010) Carbonate mud mounds, conglomerates, and sea-level history in the Katian (Upper Ordovician) of central Sweden. Facies 56(1):157–172 http://dx.doi.org/10.1007/s10347-009-0192-6
  18. Cuffey RJ (2006) Bryozoan-built reef mounds—the overview from integrating recent studies with previous investigations. Courier Forschungsinstitut Senckenberg 257:35–47Google Scholar
  19. Desrochers A, Bourque P-A, Neuweiler F (2007) Diagenetic versus biotic accretionary mechanisms of bryozoan-sponge buildups (Lower Silurian, Anticosti Island, Canada). J Sediment Res 77:564–571CrossRefGoogle Scholar
  20. Dronov AV, Holmer L (1999) Depositional sequences in the Ordovician of Baltoscandia. In: Kraft P, Fatka O (eds) Quo vadis Ordovician? Short papers of the 8th International Symposium on the Ordovician System, Acta Universitatis Carolinae, Geologica, 43(1/2), Praha, pp 1133–1136Google Scholar
  21. Dronov AV, Ainsaar L, Kaljo D, Meidla T, Saadre T, Einasto R (2011) Ordovician of Baltoscandia: facies, sequences and sea-level changes. In: Gutiérrez-Marco, JC, Rábano D, Gárcia-Bellido D (eds) Ordovician of the World. 11th International Symposium on the Ordovician System, Cuademos del Museo Geominero 14, Instituto Geologógico y Minero de Espana, Madrid, pp 143–150Google Scholar
  22. Ed Eichwald (1854) Die Grauwackenschichten von Liev- und Ehstland. Bulletin de la Societe Imperiale des Naturalistes de Moscou 27(1):1–111Google Scholar
  23. Haas A, Lodjak T (1979) Report on searches of limestone in the vicinity of Vasalemma, vol. 2. Ministry of Geology SSSR, Geological Survey of ESSR, Keila Expedition, EGF 3561, Keila [In Estonian]Google Scholar
  24. Hansen J, Nielsen JK, Hanken N-M (2009) The relationships between Late Ordovician sea-level changes and faunal turnover in western Baltica: geochemical evidence of oxic and dysoxic bottom-water conditions. Palaeogeogr Palaeoclimatol Palaeoecol 271:268–278CrossRefGoogle Scholar
  25. Hein HJ (1961) Project of conditions for the Vasalemma limestone investigated in localities “Rummu” and “Padise Paemurru” No 1 and No 2. Geological Survey of Estonia, Tallinn [In Estonian]Google Scholar
  26. Hints L (1998) Oandu Stage (Caradoc) in central North Estonia. Proceedings of the Estonian Academy of Science, Geology 47:158–172Google Scholar
  27. Hints L, Meidla T (1997) Keila Stage. In: Raukas A, Teedumäe A (eds) Geology and Mineral Resources of Estonia. Estonian Academy Publishers, Tallinn, pp 74–76Google Scholar
  28. Hints L, Miidel A (2008) Ripple marks as indicators of Late Ordovician sedimentary environments in northwest Estonia. Estonian Journal of Earth Sciences 57:11–22CrossRefGoogle Scholar
  29. Jaanusson V (1945) Die Stratigraphie der Viru—resp. Chasmops-Serie in Estland. Geologiska Föreningens i Stockholm Förhandlingen 67(2):212–224Google Scholar
  30. Jaanusson V (1976) Faunal dynamics in the Middle Ordovician (Viruan) of Baltoscandia. The Ordovician System: Proceedings of the Palaeontological Association, Symposium, Birmingham, September 1974, pp 301–326Google Scholar
  31. Kaljo D, Hints L, Martma T, Nõlvak J, Oraspõld A (2004) Late Ordovician carbon isotope trend in Estonia, its significance in stratigraphy and environmental analysis. Palaeogeogr Palaeoclimatol Palaeoecol 210(2–4):165–185CrossRefGoogle Scholar
  32. Kaljo D, Hints L, Hints O, Männik P, Martma T, Nõlvak J (2011) Katian prelude to the Hirnantian (Late Ordovician) mass extinction: a Baltic perspective. Geol J 46(5):464–477Google Scholar
  33. Kröger B, Hints L, Lehnert O, Poost T (2014) Stop A2, Vasalemma (Nordkalk) quarry. In: Bauert H, Hints O, Meidla T, Männik PT (eds) 4th Annual Meeting of IGCP 591, Estonia, 10-19 June 2014. Abstract and Field Guide. University of Tartu, Tartu, pp 138–144Google Scholar
  34. Männil R (1958) Grundzüge der Stratigraphie der Keila-stufe (Ordovizium, Estland). Eesti NSV Teaduste Akadeemia Toimetised. Tehnilise ja füüsikalis-matemaatiliste teaduste seeria 7(3):235–246 [In Russian with German abstract]Google Scholar
  35. Männil R (1960) Stratigrafia oanduskogo (“Vasalemmaskogo”) gorisonta. Trudy Instituta Geologii Akademii Nauk Estonskoi SSR 5:89–122 [In Russian]Google Scholar
  36. Männil R (1966) Evolution of the Baltic Basin during the Ordovician. Eesti NSV Teaduste Akadeemia Geoloogia Institut, Tallinn [In Russian]Google Scholar
  37. Männil R (1990) The Ordovician of Estonia. Field Meeting Estonia 1990. In: Kaljo, D, Nestor H (eds) An Excursion Guidebook. Estonian Academy of Science, Tallinn, pp 11–20Google Scholar
  38. Männil RM, Rõõmusoks A (1984) Revisija litostratigraficheskoi schemi raschlenija ordovika Severnoi Estonii. In: Männil RM, Mens KA (eds) Stratigrafija drevnepaleosoiskich otloshenii Pribaltiki. ENSV TA Geoloogia Instituut, Tallinn, pp 52–62Google Scholar
  39. Martma T (2006) Application of carbon isotopes to the study of the Ordovician and Silurian of the Baltic. Institute of Geology PhD, Tartu University of Technology, Tartu, p 243Google Scholar
  40. Nestor H, Einasto R (1997) Ordovician and Silurian carbonate sedimentation basin. In: Raukas A, Teedumäe A (eds) Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, pp 192–204Google Scholar
  41. Nielsen AT (2004) Ordovician sea-level changes: a Baltoscandian perspective. In: Webby BD, Paris F, Droser M, Percival I (eds) The Great Ordovician Biodiversification Event. Columbia University Press, New York, pp 84–93Google Scholar
  42. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. http://CRAN.R-project.org/package=vegan
  43. Põldvere A (2001) Valga (10) Drill Core. Estonian Geol Sect Bull 3:1–50Google Scholar
  44. Põldvere A (2005) Mehikoorma (421) Drill Core. Estonian Geol Sect Bull 6:1–67Google Scholar
  45. Põlma L, Sarv L, Hints L (1988) Litologia i fauna tipovih rasvesov karadokskogo jarusa v Severnoi Estonii. Valgus, Talllinn 101 ppGoogle Scholar
  46. Raymond PE (1916) The correlation of the Ordovician strata of the Baltic Basin with those of Eastern North America. Bull Mus Comp Zoöl Harv Coll 7(3):179–286Google Scholar
  47. Rõõmusoks A (1970) Stratigrafia Viruskoi i Harioskoi Serii (Ordovik) Severnoi Estonii. Valgus, Tallinn, p 343Google Scholar
  48. Schmidt F (1881) Revision der ostabaltischen silurischen Trilobiten nebst geognostischer Übersicht des ostbaltischen Silurgebiets. Abt. I. Phacopiden, Cheiruriden und Encrinuriden. Memoires de LAcademie Imperiale des Sciences de St. Petersburg 7(30):1–238Google Scholar
  49. Sial AN, Peralta S, Gaucher C, Toselli AJ, Ferreira VP, Frei R, Parada MA, Pimentel MM, Pereira NS (2013) High-resolution stable isotope stratigraphy of the upper Cambrian and Ordovician in the Argentine Precordillera: carbon isotope excursions and correlations. Gondwana Res 24:330–348CrossRefGoogle Scholar
  50. Webby BD (2002) Patterns of Ordovician reef development. In: Kiesling W, Flügel E, Golonka J (eds) Phanerozoic Reef Patterns, SEPM Special Publication No. 72, Tulsa, pp 129–179Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of Geology at Tallinn University of TechnologyTallinnEstonia
  3. 3.Geozentrum Nordbayern, Universität Erlangen-Nürnberg, Fachgruppe KrustendynamikErlangenGermany
  4. 4.Department of Geology, Lund UniversityLundSweden
  5. 5.Institute of Geology at Tallinn University of TechnologyTallinnEstonia

Personalised recommendations