Facies

, Volume 60, Issue 4, pp 883–904 | Cite as

Isolated spicules of Demospongiae from Mt. Duello (Eocene, Lessini Mts., northern Italy): preservation, taxonomy, and depositional environment

  • Viviana Frisone
  • Andrzej Pisera
  • Eduardo Hajdu
  • Nereo Preto
  • Federico Zorzi
  • Roberto Zorzin
Original Article

Abstract

Today, class Demospongiae is the largest of phylum Porifera but its fossil record, especially for “soft” demosponges, is rather scarce. This study documents exceptionally preserved isolated opaline spicules, unique for the Bartonian of Italy. Interpretation of morphological types of spicules by comparison with living species lead to their attribution to five orders (Astrophorida, Hadromerida, Haplosclerida, Poecilosclerida, “Lithistida”), seven families (Geodiidae, Placospongiidae, Tethyidae, Petrosiidae, Acarnidae, ?Corallistidae, Theonellidae) and five genera (Geodia, Erylus, Placospongia, Chondrilla, Petrosia,?Zyzzya). All the described genera are first reported from the Eocene of Europe. This study expands the geographical range of these taxa and fills a chronological gap in their fossil record. The spicules are often fragmented and bear signs of corrosion. They show two types of preservation: glassy and translucent. X-ray powder diffraction analysis confirms that both types are opal-CT with probable presence of original opal-A. Despite this, using a scanning electron microscope the texture of freshly broken surfaces is different. Milky spicules show a porous structure with incipient lepispheres. This feature, together with surface corrosion and the constant presence of the zeolite heulandite/clinoptilolite, point to a certain degree of diagenetic transformation. Macro and micro facies analysis define the sedimentary environment as a rocky shore succession, deepening upward within the photic zone. The spicule-rich sandy grainstone represents the deepest facies and was deposited in a middle-outer carbonate ramp environment, in part in a fairly high energy environment close to storm wave base.

Keywords

Spicules Demospongiae Eocene Bartonian Mt. Duello Opal 

References

  1. Ahlbach WJ, McCartney K (1992) Siliceous sponge spicules from site 748. Proc Ocean Drill Program Sci Results 120:833–837Google Scholar
  2. Barbieri G, De Zanche V, Medizza F, Sedea R (1982) Considerazioni sul vulcanismo terziario del Veneto occidentale e del Trentino meridionale. Rend Soc Geol It 4:267–270Google Scholar
  3. Barbieri G, De Zanche V, Sedea R (1991) Vulcanismo paleogenico ed evoluzione del semigraben Alpone-Agno (Monti Lessini). Rend Soc Geol It 14:5–12Google Scholar
  4. Bayan F (1870) Sur les terrains tertiaires de la Vénétie. Bull Soc Geol Fr 27:444–486Google Scholar
  5. Bayan F (1873) Notes sur quelques fossils tertiaries. Études faites dans la collection de l’Ecole des Mines, Paris 2:91–136Google Scholar
  6. Becking LE (2013) Revision of the genus Placospongia (Porifera, Demospongiae, Hadromerida, Placospongiidae) in the Indo-West Pacific. ZooKeys 298:39–76Google Scholar
  7. Bonci MC, Cirone G, Pirini C, Razzore S (1993) Ritrovamento di livelli a diatomee nel Pliocene di Genova (Formazione delle Argille di Ortovero). Paleopelagos 3:75–86Google Scholar
  8. Bonci MC, Magnino G, Pirini Radrizzani C, Pronzato R (1997) Finding of Geodia (Demospongiae) sterrasters in the Late Miocene of Cappella Montei (Alessandria) and comparison with living forms. Boll Soc Paleontol I 35(3):245–256Google Scholar
  9. Boury-Esnault N (2002) Order Chondrosida Boury-Esnault and Lopes, 1985. Family Chondrillidae Gray, 1872. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of Sponges. Kluwer Academic/Plenum Publishers, New York, pp 291–297Google Scholar
  10. Boury-Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithson Contrib Zool 596:1–55Google Scholar
  11. Boury-Esnault N, Pansini M, Uriz MJ (1994) Spongiaires bathyaux de la mer d’Alboran et du golfe ibéro-marocain. Mem Mus Natl Hist Nat Ser A (Paris) 160(Zoologie):1–174Google Scholar
  12. Bowers TS, Burns RG (1990) Activity diagrams for clinoptilolite; susceptibility of this zeolite to further diagenetic reactions. Am Miner 75(5–6):601–619Google Scholar
  13. Brimaud C, Vachard D (1986) Les Spongiaires siliceux du Tortonien des Bétiques (Miocène de l’Espagne du Sud): espèces nouvelles ou peu connues. I. Choristides et Lithistides. Bull du Mus Natl d’Hist Nat Paris C 3:293–341Google Scholar
  14. Brongniart A (1823) Memoire sur les terrains de sediment supèrieurs calcarèo-trappèens du vicentin. ParisGoogle Scholar
  15. Bukry D (1980) Eocene diatoms and siliceous sponge spicules from the northwestern Atlantic Ocean, DSDP Sites 417 and 418. In: Donnelly T, Francheteau J (eds) Initial reports Deep Sea Drilling Project, vols 51–53. US Govt. Printing Office, Washington, pp 851–855Google Scholar
  16. Burton M (1959) Sponges. In: Scientific Report of the John Murray Expedition (1933–1934), vol 10. British Mus. Nat. Hist., London, pp 151–281Google Scholar
  17. Cady SL, Wenk HR, Downing KH (1996) HRTEM of microcrystalline opal in chert and porcelanite from the Monterey Formation, California. Am Miner 81:1380–1395Google Scholar
  18. Calcinai B, Cerrano C, Sarà M, Bavestrello G (2000) Boring sponges (Porifera, Demospongiae) from the Indian Ocean. Ital J Zool 67(2):203–219Google Scholar
  19. Cannatelli C (2012) Multi-stage metasomatism in the lithosphere beneath the Veneto Volcanic Province (VVP, northern Italy). Miner Pet 104(3–4):177–195Google Scholar
  20. Cárdenas P, Xavier JR, Reveillaud J, Schander C, Rapp HT (2011) Molecular phylogeny of the Astrophorida (Porifera, Demospongiae) reveals an unexpected high level of spicule homoplasy. PLoS One 6(4):e18318Google Scholar
  21. Carter HJ (1880) Report on specimens dredged up from the Gulf of Manaar and presented to the Liverpool Free Museum by Capt.W.H. Cawne Warren. Ann Mag Nat Hist (5) 6(31):35–61Google Scholar
  22. Carter HJ (1883) Contributions to our knowledge of the Spongida. Ann Mag Nat Hist (5) 12(71):308–329Google Scholar
  23. Cattaneo A, Steel RJ (2003) Transgressive deposits: a review of their variability. Earth Sci Rev 62:187–228Google Scholar
  24. Chu JW, Maldonado M, Yahel G, Leys SP (2011) Glass sponge reefs as a silicon sink. Mar Ecol Prog Ser 441:1–14. doi:10.3354/meps09381 Google Scholar
  25. da Silva CMM, Mothes B (2000) Three new species of Geodia Lamarck, 1815 (Porifera, Demospongiae) from the bathyal depths off Brazilian coast, Southwestern Atlantic. Rev Suisse Zool 107(1):31–48Google Scholar
  26. De Geyter D, Willems W (1982) Sponge spicules from Landen Formation in Belgium. Tertiary Res 3(4):153–160Google Scholar
  27. De Gregorio A (1896) Description des faunes tertiaires de la Vénétie, monografia della fauna eocenica di Roncà con un’appendice sui fossili di Monte Pulli. Ann de Géologie et de Paléontologie, Torino-Palermo 21:1–163Google Scholar
  28. De Vecchi GP, Sedea R (1995) The Paleogene basalts of the Veneto Region (NE Italy). Mem Sci Geol 47:253–274Google Scholar
  29. De Zanche V, Conterno T (1972) Contributo alla conoscenza geologica dell’orizzonte eocenico di Roncà nel territorio veronese e nel vicentino. Atti e Memorie dell’Accademia Patavina di Lettere, Scienze ed Arti 84(2):287–295Google Scholar
  30. De Zigno A (1875) Annotazioni paleontologiche. Sirenii fossili trovati nel Veneto. Mem R Ist Ven Sc Lett Arti 18:1–30Google Scholar
  31. De Zigno A (1880) Sopra un cranio di coccodrillo scoperto nel terreno eoceno del Veronese. R Acc Lincei Mem Cl Fis Mat Nat 3(5):1–10Google Scholar
  32. De Zigno A (1881) Annotazioni paleontologiche. Nuove aggiunte alla fauna eocena del Veneto. Mem R Ist Ven Sc Lett Arti 21:1–16Google Scholar
  33. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Longman, LondonGoogle Scholar
  34. Dendy A (1905) Report on the sponges collected by Professor Herdman, at Ceylon, in 1902. In: Herdman WA (ed) Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar, Royal Society, London, pp 57–246Google Scholar
  35. Dendy A (1922) Report on the Sigmatotetraxonida collected by H.M.S. ‘Sealark’ in the Indian Ocean. Trans Linn Soc Lond 7:1–164Google Scholar
  36. Desqueyroux-Faúndez R, Valentine C (2002) Family Petrosiidae Van Soest, 1980. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of Sponges. Kluwer Academic/Plenum Publishers, New York, pp 906–917Google Scholar
  37. Downey RV, Griffiths HJ, Linse K, Janussen D (2012) Diversity and distribution patterns in high southern latitude sponges. PLoS One 7(7):e41672Google Scholar
  38. Edwards AR (1991) The Oamaru Diatomite. N Z Geol Surv Paleontol Bull 64:1–260Google Scholar
  39. Eidvin T, Rundberg Y (2007) Post-Eocene strata of the southern Viking Graben, northern North Sea; integrated biostratigraphic, strontium isotopic and lithostratigraphic study. Nor J Geol 87:91–450Google Scholar
  40. Elzea JM, Rice SB (1996) TEM and X-ray diffraction evidence for cristobalite and tridymite stacking sequences in opal. Clays Clay Miner 44:492–500Google Scholar
  41. Elzea JM, Odom IE, Miles WJ (1994) Distinguishing well-ordered opal-CT and opal-C from high temperature cristobalite by X-ray diffraction. Anal Chim Acta 286(1):107–116Google Scholar
  42. Fabiani R (1915) Il Paleogene del Veneto. Mem Ist Geol R Univ Padova 3:1–336Google Scholar
  43. Finks RM, Rigby JK (2003) Geographic and stratigraphic distribution. In: Kaesler RL (ed) Treatise on invertebrate paleontology, part E (revised), Porifera, vol 2. The Geol Soc of Am, Boulder, Colo, and the University of Kansas, Lawrence, pp 275–296Google Scholar
  44. Finks RM, Hollocher K, Thies KJ (2011) A major Eocene sponge fauna (Caste Hayne Formation, North Carolina). J N C Acad Sci 127(2):39–175Google Scholar
  45. Fortis A (1778) Della Valle vulcanico-marina di Roncà nel territorio veronese. Memoria orittografica, VeneziaGoogle Scholar
  46. Frisone V, Zorzin R (2012) Preliminary study of isolated siliceous sponge spicules from Monte Duello, Montecchia di Crosara (Lessini Mountains, Verona, NE Italy). Boll Mus Civ Storia Nat Verona, Geol Paleontol Preist 36:5–52Google Scholar
  47. Gammon PR, James NP (2003) Paleoenvironmental controls on upper Eocene biosiliceous neritic sediments, southern Australia. J Sediment Res 73(6):57–972Google Scholar
  48. Gammon PR, James NP, Pisera A (2000) Eocene spiculites and spongolites in southwestern Australia: not deep, not polar, but shallow and warm. Geology 28(9):55–858Google Scholar
  49. Graetsch H (1994) Structural characteristics of opaline and microcrystalline silica minerals. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica, vol 29. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, pp 209–232Google Scholar
  50. Graetsch H, Gies H, Topalović I (1994) NMR, XRD and IR study on microcrystalline opals. Phys Chem Miner 21:166–175Google Scholar
  51. Gray JE (1848) List of the specimens of British sponges in the collection of the British Museum (London). British Museum Publication, LondonGoogle Scholar
  52. Gray JE (1867) Notes on the arrangement of sponges, with the descriptions of some new genera. Proc Zool Soc Lond 2:492–558Google Scholar
  53. Guthrie GD Jr, Bish DL, Reynolds RS Jr (1995) Modeling the X-ray diffraction pattern of opal-CT. Am Miner 80:869–872Google Scholar
  54. Hartman WD (1981) Form and distribution of silica in sponges. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, Berlin Heidelberg New York, pp 453–493Google Scholar
  55. Herdianita NR, Browne PRL, Rodgers KA, Campbell KA (2000a) Mineralogical and morphological changes accompanying aging of siliceous sinter and silica residue. Miner Depos 35(1):48–62Google Scholar
  56. Herdianita NR, Rodgers KA, Browne PRL (2000b) Routine procedures to characterise the mineralogy of modern and ancient silica sinter deposits. Geothermics 29:367–375Google Scholar
  57. Hinde GJ (1885) On beds of sponge-remains in the lower and upper greensands of the South of England. Philos Trans R Soc Lond 2:403–453Google Scholar
  58. Hinde GJ (1910) On fossil sponge spicules in a rock from the deep lead (?) at Princess Royal Township, Norseman District, Western Australia. Geol Surv West Aust 36:7–24Google Scholar
  59. Hinde GJ, Holmes WM (1892) On the sponge-remains in the Lower Tertiary Strata near Oamaru, Otago, New Zealand. J Linn Soc Lond Zool 24:177–262Google Scholar
  60. Hooper JNA, Krasochin V (1989) Redescription of the burrowing sponge Zyzzya massalis (Dendy) from the Seychelles and Houtman-Abrolhos Islands. Beagle Rec North Ter Mus Arts Sci 6:133–140Google Scholar
  61. Hooper JNA, Van Soest RWM (eds) (2002) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  62. Hottinger L (1960) Recherches sur les Alvéolines du Paléocène et de l’Eocène. Schweizerische Paläontologische Abhandlungen 75–76:1–24Google Scholar
  63. Huggett JM, Gale AS, Wray DS (2005) Diagenetic clinoptilolite and opal-CT from the middle Eocene Wittering Formation, Isle of Wight, UK. J Sediment Res 75(4):585–595Google Scholar
  64. Ilieva A, Mihailova B, Tsintsov Z, Petrov O (2007) Structural state of microcristalline opals: a Raman spectroscopic study. Am Miner 92:1325–1333Google Scholar
  65. Ivanik MM (1983) Paleogene and Neogene sponge spicules from sites 511, 512, and 513 in the South Atlantic. In: Ludwig WJ, Krasheninnikov VA (eds) Initial reports Deep Sea Drill Project, vol 71. US Govt Printing Office, Washington, pp 933–950Google Scholar
  66. James NP, Von der Borch CC (1991) Carbonate shelf edge off southern Australia: a prograding open platform margin. Geology 19:1005–1008Google Scholar
  67. James NP, Boreen TD, Bone Y, Feary DA (1994) Holocene carbonate sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved shelf. Sediment Geol 90(3):161–177Google Scholar
  68. Johnston G (1842) A history of British sponges and lithophytes. Lizars, EdinburghGoogle Scholar
  69. Jones B, Renaut RW (2007) Microstructural changes accompanying the opal-A to opal-CT transition: new evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 54(4):921–948Google Scholar
  70. Jones JB, Segnit IR (1971) The nature of opal. I. Nomenclature and constituent phases. J Geol Soc Aust 18:57–68Google Scholar
  71. Kaesler RL (ed) (2004) Treatise on invertebrate paleontology, part E (revised), Porifera, vol 3. The Geol Soc of Am, Boulder, Colo, and the University of Kansas, LawrenceGoogle Scholar
  72. Kennett JP, Houtz, RE, Andrews PB, Edwards AE, Gostin VA, Hajos M, Hampton M, Jenkins DG, Margolis SV, Ovenshine AT, Perch-Nielsen K (1975) Cenozoic paleoceanography in the southwest Pacific Ocean, Antarctic glaciation, and the development of the Circum-Antarctic Current. In: Kennett JP, Houtz RE (eds) Initial reports Deep Sea Drill Project, vol 29. US Govt Printing Office, Washington, pp 1155–1169Google Scholar
  73. Laubenfels MW De (1936) A discussion of the sponge fauna of the Dry Tortugas in particular and the West Indies in general, with material for a revision of the families and orders of the Porifera. Carnegie Inst Wash (Tortugas Lab Paper No. 467) 30:1–225, pls 1–22Google Scholar
  74. Lamarck JBP (1815) Suite des polypiers empâtés. Mémoires du Muséum d’Histoire naturelle, Paris 1:69–80, 162–168, 331–340Google Scholar
  75. Lendenfeld R Von (1903) Porifera. Tetraxonia. In: Schulze FE (ed) Das Tierreich, vol 19. Friedländer, Berlin, pp 1–168Google Scholar
  76. Lendenfeld, R Von (1910) The sponges. 1. The Geodidae. In: Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the US Fish Commission Steamer ‘Albatross’, from October, 1904, to March, 1905, Lieut. Commander L.M. Garrett, U.S.N., Commanding, and of other Expeditions of the Albatross, 1888–1904. Mem Mus Comp Zool Harv Coll 41(1):1–259Google Scholar
  77. Locker S, Martini E (1986) Silicoflagellates and some sponge spicules from the southwest Pacific, Deep Sea Drilling Project, Leg 90. Initial Rep Deep Sea Drill Proj 90(2):867–878Google Scholar
  78. Łukowiak M, Pisera A, Schlögl J (2013) Bathyal sponges from the late Early Miocene of the Vienna Basin (central Paratethys, Slovakia). Paläontologische Zeitschrift, pp 1–15Google Scholar
  79. Lynne BY, Campbell KA (2003) Diagenetic transformations (opal-A to quartz) of low- and mid-temperature microbial textures in siliceous hot-spring deposits, Taupo Volcanic Zone, New Zealand. Can J Earth Sci 40(11):1679–1696Google Scholar
  80. Lynne BY, Campbell KA (2004) Morphologic and mineralogic transitions from opal-A to opal CT in low-temperature siliceous sinter diagenesis, Taupo Volcanic Zone, New Zealand. J Sediment Res 74:561–579Google Scholar
  81. Lynne BY, Campbell KA, Moore JN, Browne PRL (2005) Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound Roosevelt Hot Springs, Utah, USA. Sediment Geol 179:249–278Google Scholar
  82. Macera P, Gasperini D, Ranalli G, Mahatsente R (2008) Slab detachment and mantle plume upwelling in subduction zones: an example from the Italian South-Eastern Alps. J Geodyn 45(1):32–48Google Scholar
  83. Maldonado M, Carmona MC, Velásquez Z, Puig A, Cruzado A, López A, Young CM (2005) Siliceous sponges as a silicon sink: an overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnol Oceanogr 50(3):799–809Google Scholar
  84. Maldonado M, Riesgo A, Bucci A, Ruetzler K (2010) Revisiting silicon budgets at a tropical continental shelf: silica standing stocks in sponges surpass those in diatoms. Limnol Oceanogr 55(5):2001–2010Google Scholar
  85. Martini E (1981) Pliocene and Quaternary diatoms, silicoflagellates, sponge spicules, and endoskeletal dinoflagellates from the Philippine Sea, Deep Sea Drilling Project Legs 59 and 60. In: Hussong DM, Uyeda S (eds) Initial reports Deep Sea Drill Project, vol 60, pp 565–574Google Scholar
  86. Massalongo A (1857) Nuova scoperta di piante fossili nella provincia veronese. In: Notizie scientifiche, letterarie, artistiche dell’Ibis, estratto dalla Specola d’Italia, Cirelli ed, Verona-Milano, vol 9, pp 144–145Google Scholar
  87. Massalongo A (1859) Syllabus plantarum fossilium hucusque in formationibus tertiariis agri veneti detectarum. Merlo, VeronaGoogle Scholar
  88. Matteucci R, Russo A (2011) The Italian Cenozoic siliceous sponges: a review, with a revision of the Catullo (1856) collection. J Mediterr Earth Sci 3:33–43Google Scholar
  89. McCartney K (1987) Siliceous sponge spicules from Deep Sea Drilling Project Leg 93. In: van Hinte JE, Wise SW Jr (eds) Initial reports Deep Sea Drill Project, vol 93, pp 815–824Google Scholar
  90. Mellini A (1989) E’ certamente un “Velates perversus” di Roncà il più celebre fossile della letteratura italiana. In: La Grafica (ed) La Lessinia—Ieri Oggi Domani. Vago di Lavagno, pp 55–66Google Scholar
  91. Mellini A (1993) Roncà (Verona): 400 anni di ricerche e di studi geologici e paleontologici. In: La Grafica (ed) La Lessinia—Ieri Oggi Domani. Vago di Lavagno, pp 69–80Google Scholar
  92. Mellini A, Quaggiotto E (1990) Gasteropodi fossili terziari poco noti dei Lessini e dei Berici. Collezione Attilio Fedrigo (Sona, Verona). In: La Grafica (ed) La Lessinia—Ieri Oggi Domani. Vago di Lavagno, pp 55–66Google Scholar
  93. Mietto P (1997) Il Paleogene. In: Bagnoli C, Beschin C, Dal Lago A, Mietto P, Piva E, Quaggiotto E (eds) Solo a Vicenza. Gli endemismi della provincia—i fossili, le piante, gli animali, presenti solo nel territorio vicentino. Blended editrice, Vicenza, pp 57–77Google Scholar
  94. Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New YorkGoogle Scholar
  95. Murray JW (1991) Ecology and palaeoecology of benthic foraminifera. Longman, HarlowGoogle Scholar
  96. Nebelsick JH, Rasser M, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216Google Scholar
  97. Nelson DM, Gordon LI (1982) Production and pelagic dissolution of biogenic silica in the Southern Ocean. Geochim Cosmochim Acta 46:491–501Google Scholar
  98. Palmer AA (1988) Paleoenvironmental significance of siliceous sponge spicules from sites 627 and 628, Little Bahama Bank, Ocean Drilling Program Leg, vol 101. In: Austin JA, Schlager W (eds) Proceedings of ODP, Sci. Results, College Station (Ocean Drilling Program), pp 159–168Google Scholar
  99. Papazzoni CA, Trevisani E (2006) Facies analysis, palaeoenvironmental reconstruction, and biostratigraphy of the “Pesciara di Bolca”(Verona, northern Italy): an early Eocene Fossil-Lagerstätte. Palaeogeogr Palaeoclimatol Palaeoecol 242(1):21–35Google Scholar
  100. Piccoli G (1966) Studio geologico del vulcanismo paleogenico veneto. Mem Ist Geol Miner Univ Padova 26:1–100Google Scholar
  101. Piccoli G, De Zanche V (1968) Rapporti tra vulcanismo e sedimentazione nel Paleogene del Veneto (Italia nordorientale). XXIII Int Geol Congr Praha 2:49–60Google Scholar
  102. Pisera A (2003) Some aspects of silica deposition in lithistid demosponge desmas. Microsc Res Tech 62:312–326Google Scholar
  103. Pisera A (2006) Palaeontology of sponges—a review. Can J Zool 84(2):242–261Google Scholar
  104. Pisera A, Hladilová S (2003) Siliceous sponge spicules from the Karpatian of the Carapthian Foredeep in Moravia. In: Brzobohatý R, Cicha I, Cicha I, Kováč M, Rögl F (eds) The Karpatian, a Lower Miocene stage of the Central Paratethys, vol 360, Masaryk University, Brno, pp 189–192Google Scholar
  105. Pisera A, Cachao M, da Silva C (2006) Siliceous sponge spicules from the Miocene Mem Moniz marls (Portugal) and their environmental significance. Riv Ital di Paleontol 112:287–299Google Scholar
  106. Pufahl PK, James NP, Bone Y, Lukasik JJ (2004) Pliocene sedimentation in a shallow, cool-water, estuarine gulf, Murray Basin, South Australia. Sedimentology 51(5):997–1027Google Scholar
  107. Pulitzer-Finali G (1993) A collection of marine sponges from East Africa. Ann Museo Civ Storia Nat “Giacomo Doria” 89:247–350Google Scholar
  108. Reid REH (1968) Microscleres in Demosponge classification. Univ Kansas Palaeontol Contrib 35:1–37Google Scholar
  109. Reid REH (2003) Post-Paleozoic Demospongea. In: Kaesler RL (ed) Treatise on invertebrate paleontology, part E (revised), Porifera, vol 2. The Geol Soc of Am, Boulder, Colo, and the University of Kansas, Lawrence, pp 81–112Google Scholar
  110. Richter G, Baszio S (2000) Zur Taphonomie von Spongilliden (Porifera)—I. Korrosionserscheinungen an fossilen Skleren der Grube Messel. Senckenb Lethaea 80(2):445–461Google Scholar
  111. Richter G, Baszio S (2001) Zur Taphonomie von Spongillidenskleren (Porifera)—II. Aktuopaläontologische Untersuchungen. Senckenbergiana Lethaea 81(1):59–69Google Scholar
  112. Richter G, Baszio S (2009) Geographic and stratigraphic distribution of spongillids (Porifera) and the leit value of spiculites in the Messel Pit Fossil Site. Palaeobiodiversity Palaeoenvironments 89(1–2):53–66Google Scholar
  113. Ridley SO (1884) Spongiida. In: Report on the zoological collections made in the Indo-Pacific Ocean during the Voyage of H.M.S. ‘Alert’, vol 1881-2. British Mus. Nat. Hist., London, pp 366–482, 582–630Google Scholar
  114. Rigby JK, Smith CC (1992) Microscleres of a Paleocene Geodia from western Alabama. J Paleontol 3:406–413Google Scholar
  115. Riha J (1983) Sponge spicules of the Karpatian and Lower Badenian of the Carpathian Foredeep in Moravia, Czechoslovakia. Knihovnicka Zemniho Plynu a Nafty 4:171–194Google Scholar
  116. Roghi G (2012) Le piante fossili di Roncà. In: La Grafica (ed) La Lessinia—Ieri Oggi Domani. Vago di Lavagno, pp 65–68Google Scholar
  117. Rützler K (2002) Family Placospongiidae Gray, 1867. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of Sponges. Kluwer Academic/Plenum Publishers, New York, pp 196–200Google Scholar
  118. Sarà M (1994) A rearrangement of the family Tethyidae (Porifera, Hadromerida) with establishment of new genera and description of two new species. Zool J Linn Soc 110(4):355–371Google Scholar
  119. Sarà M (2002) Family Tethyidae Gray, 1848. In: Hooper JNA, Van Soest RWM (eds) Systema Porifera: a guide to the classification of Sponges. Kluwer Academic/Plenum Publishers, New York, pp 245–267Google Scholar
  120. Sarà M, Sarà A (2002) Three remarkable new genera of Tethyidae (Porifera, Demospongiae) from Australia. Ital J Zool 69(2):163–173Google Scholar
  121. Schaub H (1962) Contribution à la Stratigraphie du Nummulitique du Véronais et du Vicentin. Mem della Società Geol Ital 3:58–66Google Scholar
  122. Schmidt O (1862) Die Spongien des adriatischen Meeres. Wilhelm Engelmann, LeipzigGoogle Scholar
  123. Schmidt O (1870) Grundzüge einer Spongien-Fauna des atlantischen Gebietes Wilhelm Engelmann, LeipzigGoogle Scholar
  124. Schrammen A (1924) Die Kieselspongien der oberen Kreide von Nordwestdeutschland. III. und letzter Teil. Monogr Geol Paleoentol 2(1):1–159Google Scholar
  125. Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferrandez C, Jauhri AK et al (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Soc Geol Fr 169(2):281–299Google Scholar
  126. Silva CMM (2002) Revisão das species de Geodia Lamarck, 1815 (Porifera, Astrophorida, Geodiidae) do Atlântico Ocidental e Pacífico Oriental. Dissertation. Universidade de São PauloGoogle Scholar
  127. Smith DK (1998) Opal, cristobalite, and tridymite: noncrystallinity versus crystallinity, nomenclature of silica minerals and bibliography. Powder Diffr 13:2–19Google Scholar
  128. Sollas WJ (1886) Preliminary account of the Tetractinellid sponges Dredged by H.M.S. ‘Challenger’ 1872–76. Part I. The Choristida. Sci Proc R Dublin Soc 5:177–199Google Scholar
  129. Sollas WJ (1887) Sponges. In: Black A and C (eds) Encyclopaedia Britannica, 9th edn. Edinburgh, pp 412–429Google Scholar
  130. Sollas WJ (1888) Report on the Tetractinellida collected by H.M.S. Challenger, during the years 1873–1876. Report on the scientific results of the voyage of H.M.S. Challenger, 1873–1876. Zoology 25(63):1–458Google Scholar
  131. Topsent E (1928) Spongiaires de l’Atlantique et de la Méditerranée provenant des croisières du Prince Albert ler de Monaco. Résultats des campagnes scientifiques accomplies par le Prince Albert I. Monaco 74:1–376Google Scholar
  132. Tréguer PJ, De La Rocha CL (2013) The world ocean silica cycle. Annu Rev Mar Sci 5:477–501Google Scholar
  133. Uriz MJ (2006) Mineral skeletogenesis in sponges. Can J Zool 84(2):322–356Google Scholar
  134. Van Soest, RWM (1980) Marine sponges from Curaçao and other Caribbean localities. Part II. Haplosclerida. In: Hummelinck PW, Van der Steen LJ (eds) Uitgaven van de Natuurwetenschappelijke Studiekring voor Suriname en de Nederlandse Antillen. No. 104. Studies on the Fauna of Curaçao and other Caribbean Islands 62 (191):1–173Google Scholar
  135. Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D et al (2012a) Global diversity of sponges (Porifera). PLoS One 7(4):e35105. doi:10.1371/journal.pone.0035105 Google Scholar
  136. Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Cristina Díaz M, Cárdenas P (2012b) World Porifera database. http://www.marinespecies.org/porifera. Accessed 12 Dec 2012
  137. Vieira WF, Cosme B, Hajdu E (2010) Three new Erylus (Demospongiae, Astrophorida, Geodiidae) from the Almirante Saldanha Seamount (off SE Brazil), with further data for a tabular review of worldwide species and comments on Brazilian seamount sponges. Mar Biol Res 6(5):437–460Google Scholar
  138. Vinassa de Regny P (1895) Synopsis dei molluschi terziari delle Alpi Venete. Palaeontogr Ital 2:149–184Google Scholar
  139. Walker RG (1992) Facies, facies models and modern stratigraphic concepts. In: Walker RG, James NP (eds) Facies models—response to sea level change. Geological Association of Canada Publications, pp 1–14Google Scholar
  140. Weaver JC, Pietrasanta LI, Hedin N, Chmelka BF, Hansma PK, Morse DE (2003) Nanostructural features of demosponge biosilica. J Struct Biol 144(3):271–281Google Scholar
  141. Wiedenmayer F (1994) Contributions to the knowledge of post-Palaeozoic neritic and archibenthal sponges (Porifera): the stratigraphic record, ecology, and global distribution of intermediate and higher taxa. Schweizerische Paläont Abh 116:1–147Google Scholar
  142. Williams LA, Crerar DA (1985) Silica diagenesis, II. General mechanisms. J Sediment Petrol 55(3):312–321Google Scholar
  143. Zampieri D (1995) Tertiary extension in the southern Trento Platform, Southern Alps, Italy. Tectonics 14(3):645–657Google Scholar
  144. Zimmerle W (1991) Stratigraphic distribution, lithological paragenesis, depositional environments and diagenesis of fossil siliceous sponges in Europe. In: Reitner J, Keupp H (eds) Fossil and recent. Springer, Berlin, pp 554–577Google Scholar
  145. Zorzin R, Castellani S, Frisone V, Quaggiotto E (2012) Le campagne di scavo del Museo Paleontologico di Roncà in località Monte Duello (Comune di Montecchia di Crosara) e Valle della Chiesa (Comune di Roncà), nei Monti Lessini veronesi (Italia settentrionale): primi risultati. Boll Mus Civ Storia Nat Verona 36:53–62Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Viviana Frisone
    • 1
    • 4
  • Andrzej Pisera
    • 2
  • Eduardo Hajdu
    • 3
  • Nereo Preto
    • 4
  • Federico Zorzi
    • 4
  • Roberto Zorzin
    • 5
  1. 1.Museo di Archeologia e Scienze Naturali “G. Zannato”Montecchio MaggioreItaly
  2. 2.Institute of PaleobiologyPolish Academy of ScienceWarsawPoland
  3. 3.Museu Nacional, Departamento de InvertebradosUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Dipartimento di GeoscienzeUniversità degli Studi di PadovaPaduaItaly
  5. 5.Museo Civico di Storia Naturale di VeronaVeronaItaly

Personalised recommendations