, Volume 60, Issue 3, pp 755–771 | Cite as

Environmental significance of gypsum-bearing layers at the “Lo Hueco” paleontological site (Upper Cretaceous, Cuenca, Spain): petrography, fluid inclusions, and isotopic relations

  • Laura González-AcebrónEmail author
  • Fernando Barroso-Barcenilla
  • Oscar Cambra-Moo
  • Beatriz Carenas
  • Manuel Segura
Original Article


“Lo Hueco” (Cuenca, Spain) is an upper Campanian–lower Maastrichtian Fossil-Lagerstätte that has provided more than 8,500 well-preserved macrofossils, including titanosaur sauropod dinosaurs. Although the facies and fossil record point to both fresh and brackish or marine water influences, a detailed study of the sulphate-bearing layers of the site through petrography, fluid inclusions, and isotopes has been undertaken to evaluate the possible marine influence. The two main sulphate units of the “Lo Hueco” site consist chiefly of bimodal micro- to meso- lenticular gypsum crystals that grew displacively in a clayey-carbonate sediment. The well-preserved lenticular gypsum crystals are primary, as demonstrated by the presence of the original twinning and the absence of hydration textures or anhydrite relicts. Primary fluid inclusions of the lenticular gypsum crystals indicate a vadose environment of formation, with salinities between 1,800 and 14,000 ppm, pointing to a brackish but non-marine environment. Furthermore, gypsum exhibits 87Sr/86Sr values between 0.708034 and 0.708120, which are higher than those from marine evaporites of Campanian–Maastrichtian age, indicating a clear influence of fresh water. Gypsum δ 34S VCDT values (18.1 to 19.0 ± 0.5 ‰) and δ 18OVSMOW values (11.0 to 15.2 ± 0.5 ‰), on the other hand, are typical isotopic values recorded in marine evaporites of this age. This apparent contradiction between fluid inclusion and Sr isotopic data is probably the result of some recycling from Upper Cretaceous evaporites. Based on all these observations, the sulphate-bearing layers are interpreted as probably formed in a near-coastal saline mudflat of a playa lake. As a whole, this study highlights the importance of combining different proxies when dealing with evaporites formed in brackish-water environments.


Campanian–Maastrichtian Fluid inclusions “Lo Hueco” Marine influence Sulphate Vadose environment 



The authors would like to thank the useful comments and revisions on the manuscript of F. Ortí, M. Moragas, E. Playà, L. Domingo, and M.E. Tucker. Barajas is also thanked for her technical support. Part of this research has been financed and carried out within projects PEII11-0237-7926 of the Junta de Castilla-La Mancha, and CGL2011-25894, CGL2011-227/BTE and CGL2012-35199 of the Ministerio de Economía y Competitividad, Spain.


  1. Albert-Colomer V, Ferreiro-Padín E (1998) Explicación de la Hoja de San Lorenzo de la Parrilla, 634 (23–25). Mapa Geológico de España 1:50000. Segunda Serie. Instituto Geológico y Minero de EspañaGoogle Scholar
  2. Ali YA, West I (1983) Relationship of modern gypsum nodules in sabkhas of loess to composition of brines and sediments in northern Egypt. J Sediment Petrol 53(4):1151–1168Google Scholar
  3. Arenas C, Casanova J, Pardo G (1997) Stable-isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain): paleogeographic and paleoclimatic implications. Palaeoclimatol Palaeoecol 128:133–155CrossRefGoogle Scholar
  4. Barroso-Barcenilla F, Cambra-Moo O, Escaso F, Ortega F, Pascual A, Pérez-García A, Rodríguez-Lázaro J, Sanz JL, Segura M, Torices A (2009a) New and exceptional discovery in the Upper Cretaceous of the Iberian Peninsula: the palaeontological site of “Lo Hueco”, Cuenca, Spain. Cretaceous Res 30:1268–1278CrossRefGoogle Scholar
  5. Barroso-Barcenilla F, Cambra-Moo O, Carenas B, Coruña F, Domingo L (2009b) First mineralogical and geochemical overview and interpretation of “Lo Hueco” vertebrate site (Upper Cretaceous, Cuenca, Spain). J Vertebr Paleontol 29(Supplement to 3):59 Google Scholar
  6. Barroso-Barcenilla F, Cambra-Moo O, Segura M (2010) Estudio preliminar sobre Geología y Tafonomía del yacimiento paleontológico de “Lo Hueco” (Cretácico Superior, Cuenca, España). Bol R Soc Esp Hist Nat Sec Geo 104:57–70Google Scholar
  7. Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Ac 57:683–684CrossRefGoogle Scholar
  8. Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519CrossRefGoogle Scholar
  9. Callapez P, Barroso-Barcenilla F, Cambra-Moo O, Segura M (2013) Molluscs from the fossil site of “Lo Hueco” (Upper Cretaceous, Cuenca, Spain): palaeoenvironmental and sequential implications. Estudios Geológicos. doi: 10.3989/egeol.41148.244
  10. Cambra-Moo O, Barroso-Barcenilla F, Berreteaga A, Carenas B, Coruña F, Domingo L, Domingo MS, Elvira A, Escaso F, Ortega F, Pérez-García A, Peyrot D, Sanz JL, Segura M, Sopelana A, Torices A (2012) Preliminary taphonomic approach to “Lo Hueco” palaeontological site (Upper Cretaceous, Cuenca, Spain). Geobios 46:157–166CrossRefGoogle Scholar
  11. Cambra-Moo O, Barroso-Barcenilla F, Coruña F, Postigo-Mijarra JM (2013) Exceptionally preserved vegetal remains from the Upper Cretaceous “Lo Hueco” site, Cuenca, Spain. Lethaia 46:127–140CrossRefGoogle Scholar
  12. Carenas B, Barroso-Barcenilla F, Berreteaga A, Cambra-Moo O, Coruña F, González-Acebrón L, Segura M (2011) First overview on gypsum in the new and exceptional “Lo Hueco” fossil site, (Upper Cretaceous, Cuenca, Spain). In: Sampson DH (ed) Gypsum: properties, production and applications. Nova Publishers, New York, pp 176–190Google Scholar
  13. Claypool GE, Holser WT, Kaplan YR, Sakai H, Zak I (1980) The age of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260CrossRefGoogle Scholar
  14. Coruña F, Barroso-Barcenilla F, Cambra-Moo O (2011) Clay mineral characterization of “Lo Hueco” fossil site (Upper Cretaceous, Cuenca, Spain). Abstracts of the Euroclay 2011 Conference, p 247Google Scholar
  15. D’Alessandro A, Bromley RG (1987) Meniscate trace fossils and the Muensteria-Taerudium problem. Palaeontology 30:743–776Google Scholar
  16. Domingo L, Barroso-Barcenilla F, Cambra-Moo O (2013) Palaeoenvironmental reconstruction of the “Lo Hueco” fossil site (Upper Cretaceous, Cuenca, Spain): preliminary stable isotope analyses on crocodilians and dinosaurs. Palaios 28:195–202CrossRefGoogle Scholar
  17. Forte GL, Ortí F, Rosell L (2005) Isotopic characterization of Jurassic evaporites. Aconcagua-Neuquén Basin, Argentina. Geologica Acta 3:155–161Google Scholar
  18. Frey RW, Pemberton SG (1984) Trace fossil facies models. In: Walker RG (ed) Facies models. Geoscience Canada Reprint, Series 1, Geological Association of Canadá, Toronto, pp 189–207 Google Scholar
  19. García A, Segura M, García-Hidalgo JF, Carenas B (1993) Mixed siliciclastic and carbonate platform of Albian-Cenomanian age from the Iberian Basin (Spain). In: Simo T, Scott BW, Masse JP (eds) Cretaceous carbonate platforms. AAPG Memoir 56, American Association of Petroleum Geologists, Tulsa, pp 255–269Google Scholar
  20. García-Hidalgo JF, Barroso-Barcenilla F, Gil J, Martínez R, Pons JM, Segura M (2012) Stratal, sedimentary and faunal relationships in the Coniacian 3rd order sequence of the Iberian Basin (Spain). Cretaceous Res 34:268–283CrossRefGoogle Scholar
  21. Gil J, Carenas B, Segura M, García-Hidalgo JF, García A (2004) Revisión y correlación de las unidades litoestratigráficas del Cretácico Superior en la región central y oriental de España. Rev Soc Geol Esp 17:249–266Google Scholar
  22. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEMP Short Course 31, SEPM, TulsaGoogle Scholar
  23. González-Acebrón L, Barroso-Barcenilla F, Cambra-Moo O, Carenas B (2010) Exploratory diagenetic analysis on vertebrate fossils from “Lo Hueco” site (Upper Cretaceous, Cuenca Spain). J Vertebr Paleontol Supplement for the Society of Vertebrate Paleontology LXX Meeting:97–98Google Scholar
  24. Hancock JM (1991) Ammonite scales for the Cretaceous system. Cretaceous Res 12:259–291CrossRefGoogle Scholar
  25. Hess J, Bender ML, Schilling JG (1986) Evolution of the ratio of Strontium-87 to Strontium-86 in seawater from Cretaceous to present. Science 231:979–984CrossRefGoogle Scholar
  26. Holser WT, Clement GP, Jansa LF, Wade JA (1988) Evaporite deposits of the North Atlantic rift. In: Masspeizer W (ed) Triassic-Jurassic rifting. Continental breakup and the origin of the Atlantic Ocean and passive margins, Part B, Elsevier, Amsterdam, pp 526–556Google Scholar
  27. Huerta P, Armenteros I, Recio C, Blanco JA (2010) Palaeogroundwater evolution in playa-lake environments. Sedimentary facies and stable isotope record (Palaeogene, Almazán basin, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 286:135–148CrossRefGoogle Scholar
  28. Ingram BL, Sloan D (1992) Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science 255:68–72CrossRefGoogle Scholar
  29. Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger DH, Dunham JB, Ethington RL (eds) Concepts and models of dolomitization 28. SEPM Spec Publ, Tulsa, pp 87–110Google Scholar
  30. Land LS (1992) The dolomite problem: stable and radiogenetic isotope clues. In: Chaudhuri NS (ed) Isotopic signature of sedimentary records 43. Lecture notes in Earth Science, pp 49–68Google Scholar
  31. Lendínez-González A, Muñoz del Real JL, Insua-Márquez M (1998) Explicación de la Hoja de Villar de Olalla, 609 (23–24). Mapa Geológico de España 1:50000. Segunda Serie. Instituto Geológico y Minero de España, MadridGoogle Scholar
  32. Lindholm RE, Finkelman RB (1972) Calcite staining; semiquantitative determination of ferrous iron. J Sediment Petrol 1:239–245CrossRefGoogle Scholar
  33. Lloyd RM (1968) Oxygen isotope behavior in the sulfate-water system. J Geophys Res 73:6099–6110CrossRefGoogle Scholar
  34. Lu FH, Meyers WL, Schoonen MA (2001) S and O (SO4) isotopes, simultaneous modeling and environmental significance of the Nijar Messinian gypsum, Spain. Geochim Cosmochim Acta 65:3081–3092CrossRefGoogle Scholar
  35. MacLeod KG, Fullagar PD, Huber BT (2003) 87Sr/86Sr test of the degree of impact-induced slope failure in the Maastrichtian of the western North Atlantic. Geology 31(4):311–314CrossRefGoogle Scholar
  36. McArthur JM (1994) Recent trends in strontium isotope stratigraphy. Terra Nova 6(4):331–358CrossRefGoogle Scholar
  37. McArthur JM, Howarth RJ (2004) Strontium isotope stratigraphy. In: Gradstein F, Ogg J, Smith A (eds) A geological time scale. Cambridge University Press, Cambridge, pp 96–105Google Scholar
  38. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: lowess version 3: best-fit to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170CrossRefGoogle Scholar
  39. McKenzie J (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study. J Geol 89:185–198CrossRefGoogle Scholar
  40. Meléndez F (1975) Correlación del Cretácico de la Serranía de Cuenca con el del Sondeo de Villanueva de los Escuderos 1 (Cuenca). Actas del I Symposium sobre el Cretácico de la Cordillera Ibérica, pp 85–97Google Scholar
  41. Meléndez-Hevia F (1971) Estudio geológico de la Serranía de Cuenca en relación a sus posibilidades petrolíferas. Ph.D. Thesis. Publicaciones de la Facultad de Ciencias de la Universidad Complutense de Madrid, MadridGoogle Scholar
  42. Ortega F, Sanz JL, Barroso-Barcenilla F, Cambra-Moo O, Escaso F, García-Oliva M, Marcos-Fernández F (2008) El yacimiento de macrovertebrados fósiles del Cretácico Superior de “Lo Hueco” (Fuentes, Cuenca). In: Esteve J, Meléndez G (eds) Palaeontologica Nova. Publicaciones del Seminario de Paleontología de Zaragoza 8, Zaragoza, pp 119–131Google Scholar
  43. Ortí F (2000) Unidades glauberíticas del Terciario Ibérico: nuevas aportaciones. R Soc Geol Esp 13:227–249Google Scholar
  44. Ortí F (2010) Evaporitas: introducción a la sedimentología evaporítica. In: Arche A (ed) Sedimentología: del proceso físico a la cuenca sedimentaria. Consejo Superior de Investigaciones Científicas, Madrid, pp 675–769Google Scholar
  45. Paytan A, Kastner M, Campbell D, Thiemens MH (2004) Seawater sulfur isotope fluctuations in the Cretaceous. Science 304:1663–1665CrossRefGoogle Scholar
  46. Pérez-García A, Ortega F, Murelaga X (2009) Una probable tortuga Pancryptodira del Cretácico Superior de “Lo Hueco” (Cuenca, España). Paleolusitana 1:365–371Google Scholar
  47. Peyrot D, Barroso-Barcenilla F, Cambra-Moo O (2013) Paleoecology of the late Campanian/early Maastrichtian Fossil-Lagerstätte of “Lo Hueco” (Cuenca, Spain): palynological insigns. Palaeogeogr Palaeoclimatol Palaeoecol 387:27–39CrossRefGoogle Scholar
  48. Playà E, Rosell L (2005) The celestite problem in gypsum Sr geochemistry: an evaluation of purifying methods of gypsiferous samples. Chem Geol 221:102–116CrossRefGoogle Scholar
  49. Playà E, Cendón DI, Travé A, Chivas AR, García A (2007) Non-marine evaporites with both inherited marine and continental signatures: the Gulf of Carpetania, Australia, at ~70 ka. Sediment Geol 201:267–285CrossRefGoogle Scholar
  50. Poyato-Ariza FJ, Talbot MR, Fregenal-Martínez MA, Melendez N, Wenz S (1998) First isotopic and multidisciplinary evidence for non-marine coelacanths and pycnodontiform fishes: paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 144:65–84CrossRefGoogle Scholar
  51. Ramírez del Pozo J, Portero JM, Olivé A (1975) Fuentes, 635 (24–25). Mapa Geológico de España 1:50000. Segunda Serie. Instituto Geológico y Minero de EspañaGoogle Scholar
  52. Ramírez-Merino JA (1989) Explicación de la Hoja de Las Majadas, 587 (24–23) Mapa Geológico de España 1:50000. Segunda Serie. Instituto Geológico y Minero de España, MadridGoogle Scholar
  53. Rodríguez-Aranda JP, Calvo JP (1998) Trace fossils and rhizoliths as a tool for sedimentological and palaeoenvironmental analysis of ancient continental evaporite successions. Palaeogeogr Palaeoclimatol Palaeoecol 140:383–399CrossRefGoogle Scholar
  54. Salvany JM, Muñoz A, Pérez A (1994) Nonmarine evaporitic sedimentation and associated diagenetic processes of the southwestern margin of the Ebro Basin (lower Miocene), Spain. J Sediment Res 64(A2):190–203Google Scholar
  55. Segura M, García-Hidalgo JF, Carenas B, García A (1993) Upper Cenomanian platform from central Eastern Iberian (Spain). In: Simo T, Scott BW, Masse JP (eds) Cretaceous carbonate platforms. AAPG Memoir 56, American Association of Petroleum Geologists, pp 283–296Google Scholar
  56. Segura M, Polo T, García-Hidalgo JF, Gil J, Carenas B, García A (2006) The Upper Cretaceous in Tagus Basin (Central Spain): sequential analysis based on oil-well data and outcrop correlation. In: Moratti G, Chalouan A (eds) Tectonics of the Western Mediterranean and North Africa. Geological Society, Special Publication, 262, pp 231–244Google Scholar
  57. Strauss H (1997) The isotopic composition of sedimentary sulphur through time. Palaeogeogr Palaeoclim Paleoecol 132:97–118CrossRefGoogle Scholar
  58. Thode HG, Monster J (1965) Sulfur isotope geochemistry of petroleum, evaporites, and ancient seas. Am Assoc Pet Geol Mem 4:367–377 (reprinted In: Kirkland DW, Evans R (eds) Marine evaporites: origin, diagenesis, and geochemistry. Dowden, Hutchinson and Ross, Stroudsburg, 1973, pp 363–373)Google Scholar
  59. Tucker ME, Wright VP (1992) Carbonate sedimentology. Blackwell, OxfordGoogle Scholar
  60. Utrilla R, Pierre C, Ortí F, Pueyo JJ (1992) Oxygen and sulphur isotope compositions as indicators of the origin of Mesozoic and Cenozoic evaporites from Spain. Chem Geol 102:229–244CrossRefGoogle Scholar
  61. Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the d18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320CrossRefGoogle Scholar
  62. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Goddéris Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  63. Vilas L, Mas R, García A, Alonso A, Meléndez N, Rincón R (1982) Ibérica Suroccidental. In: García A (ed) El Cretácico de España. Universidad Complutense de Madrid, Madrid, pp 457–508Google Scholar
  64. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin Heidelberg New York, p 1035Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura González-Acebrón
    • 1
    Email author
  • Fernando Barroso-Barcenilla
    • 2
    • 3
  • Oscar Cambra-Moo
    • 4
  • Beatriz Carenas
    • 5
  • Manuel Segura
    • 2
  1. 1.Departamento de Estratigrafía, Facultad de Ciencias GeológicasUniversidad Complutense de MadridMadridSpain
  2. 2.Grupo de Investigación IberCretaUniversidad de Alcalá de HenaresAlcalá de HenaresSpain
  3. 3.Departamento de Paleontología, Facultad de Ciencias GeológicasUniversidad Complutense de MadridMadridSpain
  4. 4.Laboratorio de Poblaciones del Pasado (LAPP), Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  5. 5.Departamento de Geología, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations