, Volume 60, Issue 2, pp 651–662 | Cite as

The Paleozoic problematica Wetheredella and Allonema are two aspects of the same organism

  • Emilia JarochowskaEmail author
  • Axel Munnecke
Original Article


Wetheredella is a calcareous encrusting microproblematicum known only from its two-dimensional expression in thin-sections. It occurs in Cambrian through Permian rocks, often in association with Rothpletzella and Girvanella, probable calcifying cyanobacteria. We show that Wetheredella can be produced by sectioning of the Paleozoic incertae sedis sclerobiont Allonema, which has until now been recognized based on its surface, 3D aspect. Therefore, we propose that Wetheredella should be regarded as a junior synonym of Allonema. Structures resembling Wetheredella have also been obtained in thin-sections through another encrusting microproblematicum, Ascodictyon, which, however, differs in the ultrastructure of its wall, which consists of parallel calcite crystals in contrast to radial crystals in Allonema. Allonema specimens used in the study were extracted from the Middle Silurian Mulde Brick-clay Member (Gotland, Sweden), representing an off-platform environment below the photic zone. This, together with the primary calcitic, radial wall structure of Allonema argues against a cyanobacterial or algal affinity, which had been considered for Wetheredella. The taxonomic position of Allonema remains unresolved, but the sclerobiont shares many common characteristics with some Paleozoic encrusting foraminifers. Combining the occurrence data on Allonema in its surface aspect and the “Wetheredella” aspect recognized in thin-sections may shed more light on its affinity and paleoecological functions, particularly its association with cyanobacteria and its role as a framework-builder in Paleozoic reefs.


Pseudo-bryozoans Ascodictyon Rothpletzella Cyanobacteria Tuberitinidae Ptychocladiidae 



This work was supported by the Deutsche Forschungsgemeinschaft (Project No. Mu 2352/3). We wish to thank A. Ernst, P. D. Taylor, and M.A. Wilson for help in the identification of Allonema and in accessing the literature. We are grateful to O. Vinn and R. Riding for suggestions that helped to improve the present version of the manuscript, as well as two anonymous reviewers and the PALAIOS Editors who provided constructive comments on an earlier version and helped to improve the language. We also thank I. Oswald for kindly sharing the thin-sections and observations on Wetheredella from the Tofta Fm. in Nors, Gotland; K. Frisch, B. Leipner-Mata, and Ch. Schulbert for help in sample preparation and SEM photography, and C. Färber for collecting the material in Gotland. This paper is a contribution to the International Geoscience Programme (IGCP) Project 591—The Early to Middle Palaeozoic Revolution.

Supplementary material

10347_2014_399_MOESM1_ESM.xls (31 kb)
Supplementary material 1 (XLS 31 kb)


  1. Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int 31:153–169. doi: 10.1002/anie.199201531 CrossRefGoogle Scholar
  2. Bassler RS (1952) Taxonomic notes on genera of fossil and Recent Bryozoa. J Wash Acad Sci 42:381–385Google Scholar
  3. Bassler RS (1953) Bryozoa. In: Moore RC (ed) Treatise on Invertebrate Paleontology, part G. University of Kansas Press, Lawrence, p 253Google Scholar
  4. Bełka Z (1981) The alleged algal genus Aphralysia is a foraminifer. N Jb Geol Paläont Abh 5:257–266Google Scholar
  5. Brett CE, Smrecak T, Hubbard KP, Walker S (2012) Marine sclerobiofacies: Encrusting and endolithic communities on shells through time and space. In: Talent J (ed) Earth and life. International Year of Planet Earth. Springer Netherlands, pp 129–157. doi: 10.1007/978-90-481-3428-1_6
  6. Brood K (1978) Skeletal structures of Silurian auloporid corals. Geol Fören Stockholm Förh 100:53–63. doi: 10.1080/11035897809448560 CrossRefGoogle Scholar
  7. Calner M (2005a) A Late Silurian extinction event and anachronistic period. Geology 33:305–308. doi: 10.1130/g21185.1 CrossRefGoogle Scholar
  8. Calner M (2005b) Silurian carbonate platforms and extinction events—ecosystem changes exemplified from Gotland, Sweden. Facies 51:584–591. doi: 10.1007/s10347-005-0050-0 CrossRefGoogle Scholar
  9. Calner M, Sandström O, Mõtus M-A (2000) Significance of a halysitid-heliolitid mud-facies autobiostrome from the Middle Silurian of Gotland, Sweden. Palaios 15:511-523. doi: 10.1669/0883-1351(2000)015<0511:soahhm>;2
  10. Chuvashov B, Riding R (1984) Principal floras of Palaeozoic marine calcareous algae. Palaeontology 27:487–500Google Scholar
  11. Copper P (1976) The cyanophyte Wetheredella in Ordovician reefs and off-reef sediments. Lethaia 9:273–281. doi: 10.1111/j.1502-3931.1976.tb01321.x CrossRefGoogle Scholar
  12. Copper P (2001) Reefs during the multiple crises towards the Ordovician-Silurian boundary: Anticosti Island, eastern Canada, and worldwide. Can J Earth Sci 38:153–171. doi: 10.1139/e00-071 CrossRefGoogle Scholar
  13. Copper P, Jin J (2012) Early Silurian (Aeronian) East Point coral patch reefs of Anticosti Island, Eastern Canada: first reef recovery from the Ordovician/Silurian mass extinction in Eastern Laurentia. Geosciences 2:64–89CrossRefGoogle Scholar
  14. Cuffey RJ (1967) Bryozoan Tabulipora carbonaria in Wreford Megacyclothem (Lower Permian) of Kansas. Univ Kansas Paleont Contrib 43:1–96Google Scholar
  15. Desrochers A, Farley C, Achab A, Asselin E, Riva JF (2010) A far-field record of the end Ordovician glaciation: The Ellis Bay Formation, Anticosti Island, Eastern Canada. Palaeogeogr Palaeoclimatol Palaeoecol 296:248–263. doi: 10.1016/j.palaeo.2010.02.017 Google Scholar
  16. Dzik J (1975) The origin and early phylogeny of the cheilostomatous bryozoa. Acta Palaeont Polon 20:395–423Google Scholar
  17. Elias MK (1950) Paleozoic Ptychocladia and related Foraminifera. J Paleont 24:287–306. doi: 10.2307/1299576 Google Scholar
  18. Ezaki Y (2009) Secular fluctuations in Palaeozoic and Mesozoic reef-forming organisms during greenhouse periods: geobiological interrelations and consequences. Paleont Res 13:23–38. doi: 10.2517/1342-8144-13.1.023 CrossRefGoogle Scholar
  19. Feng Q, Gong Y-M, Riding R (2010) Mid-Late Devonian calcified marine algae and cyanobacteria, South China. J Paleont 84:569–587. doi: 10.1666/09-108.1 CrossRefGoogle Scholar
  20. Hurst JM (1975) Some observations on brachiopods and the level-bottom community ecology of Gotland. Geol Fören Stockholm Förhandl 97:250–264. doi: 10.1080/11035897509454308 CrossRefGoogle Scholar
  21. Ishchenko AA, Radionova EP (1981) On the morphological features and systematic position of the genus Wetheredella Wood 1948. In: Questions of micropalaeontology. Trans Geol Inst Soviet Acad Sci 24:140–151Google Scholar
  22. Jarochowska E, Tonarová P, Munnecke A, Ferrová L, Sklenář J, Vodrážková S (2013) An acid-free method of microfossil extraction from clay-rich lithologies using the surfactant Rewoquat. Palaeont Electron 16(3):16Google Scholar
  23. Jeppsson L, Calner M (2003) The Silurian Mulde Event and a scenario for secundo–secundo events. Trans Roy Soc Edinb Earth Sci 93:135–154Google Scholar
  24. Kiepura M (1965) Devonian bryozoans of the Holy Cross Mountains, Poland. Acta Palaeont Polon 10:11–48Google Scholar
  25. Kobluk DR, James NP (1979) Cavity-dwelling organisms in Lower Cambrian patch reefs from southern Labrador. Lethaia 12:193–218. doi: 10.1111/j.1502-3931.1979.tb00997.x CrossRefGoogle Scholar
  26. Laufeld S (1974a) Reference localities for palaeontology and geology in the Silurian of Gotland. Sver Geol Unders ser C 705:1–172Google Scholar
  27. Laufeld S (1974b) Silurian Chitinozoa from Gotland. Fossils Strata 5:1–130Google Scholar
  28. Lipps JH (1973) Test structure in Foraminifera. Ann Rev Microbiol 27:471–486. doi: 10.1146/annurev.mi.27.100173.002351 CrossRefGoogle Scholar
  29. Loeblich AR, Tappan H (1964) Sarcodina, chiefly ‘thecamoebians’ and Foraminiferida. In: Moore RC (ed) Treatise on invertebrate paleontology, part C, vol 2. University of Kansas Press, Lawrence, p 510Google Scholar
  30. Lohmann KC, Meyers WJ (1977) Microdolomite inclusions in cloudy prismatic calcites; a proposed criterion for former high-magnesium calcites. J Sediment Res 47:1078–1088. doi: 10.1306/212f72e3-2b24-11d7-8648000102c1865d Google Scholar
  31. Maliva RG (1995) Recurrent neomorphic and cement microtextures from different diagenetic environments, Quaternary to Late Neogene carbonates, Great Bahama bank. Sediment Geol 97:1–7. doi: 10.1016/0037-0738(95)00010-6 CrossRefGoogle Scholar
  32. Mamet B, Roux A (1975) Algues dévoniennes et carbonifères de la Téthys occidentale. Rev Micropaleont 183:134–187Google Scholar
  33. Mistiaen B, Brice D, Zapalski M, Loones C (2012) Brachiopods and their auloporid epibionts in the Devonian of Boulonnais (France): Comparison with other associations globally. In: Talent J (ed) Earth and life. International Year of Planet Earth. Springer Netherlands, pp 159–188. doi: 10.1007/978-90-481-3428-1_7
  34. Munnecke A (1997) Bildung mikritischer Kalke im Silur auf Gotland. Cour Forsch-Inst Senckenberg 198:1–131Google Scholar
  35. Nicholson HA, Etheridge R (1877) On Ascodictyon, a new provisional and anomalous genus of Palaeozoic fossils. Ann Mag Nat Hist 19:463–469CrossRefGoogle Scholar
  36. Nose M, Schmid DU, Leinfelder RR (2006) Significance of microbialites, calcimicrobes, and calcareous algae in reefal framework formation from the Silurian of Gotland, Sweden. Sediment Geol 192:243–265. doi: 10.1016/j.sedgeo.2006.04.009 CrossRefGoogle Scholar
  37. Oswald I (2010) Microfacies analysis of a peculiar reef in the Silurian Tofta Formation on Gotland, Sweden. Diploma thesis, Friedrich-Alexander Universität Erlangen-Nürnberg, ErlangenGoogle Scholar
  38. Ratcliffe KT (1988) Oncoids as environmental indicators in the Much Wenlock Limestone Formation of the English Midlands. J Geol Soc Lond 145:117–124. doi: 10.1144/gsjgs.145.1.0117 CrossRefGoogle Scholar
  39. Reid RP, Macintyre IG (1998) Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. J Sediment Res 68:928–946. doi: 10.2110/jsr.68.928 CrossRefGoogle Scholar
  40. Riding R (1977) Systematics of Wetheredella. Lethaia 10:94. doi: 10.1111/j.1502-3931.1977.tb00596.x CrossRefGoogle Scholar
  41. Riding R (1991) Calcified Cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 55–87CrossRefGoogle Scholar
  42. Rothpletz A (1913) Über die Kalkalgen, Spongiostromen und einige andere Fossilien aus dem Obersilur Gottlands. Sver Geol Unders Ser C 10:1–57Google Scholar
  43. Shen J-W, Webb GE (2004) Famennian (Upper Devonian) calcimicrobial (Renalcis) reef at Miaomen, Guilin, Guangxi, South China. Palaeogeogr Palaeoclimatol Palaeoecol 204:373–394. doi: 10.1016/S0031-0182(03)00737-5 CrossRefGoogle Scholar
  44. Spjeldnaes N (1984) Epifauna as a tool in autecological analysis of Silurian brachiopods. Palaeontology Spec Pap 32:225–235Google Scholar
  45. Taylor PD, Wilson MA (2008) Morphology and affinities of hederelloid “bryozoans”. In: Hageman SJ, Key MM, Winston JE (eds) International Bryozoology Conference, Boone, North Carolina, 2008. Virginia Mus Nat Hist Spec Publ, pp 301–309Google Scholar
  46. Taylor TN, Hass H, Kerp H (1997) A cyanolichen from the Lower Devonian Rhynie chert. Am J Bot 84:992–1004CrossRefGoogle Scholar
  47. Taylor PD, Vinn O, Wilson MA (2010) Evolution of biomineralization in ‘Lophophorates’. In: Alvarez F, Curry GB (eds.) Evolution and development of the brachiopod shell. Palaeontology Spec Pap, 84:317–333. doi: 10.1111/j.1475-4983.2010.00985.x
  48. Towe KM, Cifelli R (1967) Wall ultrastructure in the calcareous Foraminifera: crystallographic aspects and a model for calcification. J Paleont 41:742–762. doi: 10.2307/1302055 Google Scholar
  49. Ulrich EO (1890) Paleozoic Bryozoa. Part II. Paleontol Ill 8:285–688Google Scholar
  50. Ulrich EO, Bassler RS (1904) A revision of the Paleozoic Bryozoa, part I: on genera and species of Ctenostomata. Smithson Misc Collect 45(24):256–294Google Scholar
  51. Vachard D, Cózar P (2010) An attempt of classification of the Palaeozoic incertae sedis Algospongia. Rev Esp Micropaleont 42:129–241Google Scholar
  52. Vachard D, Hauser M, Matter A, Peters T, Martini R, Zaninetti L (2001) New algae and problematica of algal affinity from the Permian of the Aseelah Unit of the Batain Plain (East Oman). Geobios 34:375–404. doi: 10.1016/S0016-6995(01)80003-6 CrossRefGoogle Scholar
  53. Vinn O (2005) A new cornulitid genus from the Silurian of Gotland, Sweden. GFF 127:205–210. doi: 10.1080/11035890501273205 CrossRefGoogle Scholar
  54. Vinn O, Taylor PD (2007) Microconchid tubeworms from the Jurassic of England and France. Acta Palaeont Polon 52:391–399Google Scholar
  55. Vinn O, Zatoń M (2012) Phenetic phylogenetics of tentaculitoids—extinct, problematic calcareous tube-forming organisms. GFF 134:145–156. doi: 10.1080/11035897.2012.669788 CrossRefGoogle Scholar
  56. Vinn O, Jäger M, Kirsimäe K (2008a) Microscopic evidence of serpulid affinities of the problematic fossil tube ‘Serpula’ etalensis from the Lower Jurassic of Germany. Lethaia 41:417–421. doi: 10.1111/j.1502-3931.2008.00093.x CrossRefGoogle Scholar
  57. Vinn O, Mutvei H, ten Hove HA, Kirsimä e K (2008b) Unique Mg-calcite skeletal ultrastructure in the tube of the serpulid polychaete Ditrupa. N Jb Geol Paläont Abh 248:79–89CrossRefGoogle Scholar
  58. Vinn O, Ten Hove HA, Mutvei H, Kirsimäe K (2008c) Ultrastructure and mineral composition of serpulid tubes (Polychaeta, Annelida). Zool J Linn Soc 154:633–650. doi: 10.1111/j.1096-3642.2008.00421.x CrossRefGoogle Scholar
  59. Wilson MA, Taylor PD (2001) “Pseudobryozoans” and the problem of encruster diversity in the Paleozoic. PaleoBios 21:134–135Google Scholar
  60. Wood A (1948) “Sphaerocodium,” a misinterpreted fossil from the Wenlock limestone. Proc Geol Assoc 59:9-IN5. doi: 10.1016/S0016-7878(48)80027-1

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.GeoZentrum Nordbayern, Fachgruppe PaläoumweltUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations