, Volume 60, Issue 2, pp 429–444

Stromatolites in the Paratethys Sea during the Middle Miocene climate transition as witness of the Badenian salinity crisis

  • Mathias Harzhauser
  • Jörn Peckmann
  • Daniel Birgel
  • Erich Draganits
  • Oleg Mandic
  • Dörte Theobalt
  • Julian Huemer
Original Article


This is the first documentation of Middle Miocene (late Langhian) stromatolites from the Central Paratethys Sea. These microbialites formed in a lagoonal setting in the Austrian Oberpullendorf Basin, which is part of the Pannonian Basin Complex. Sedimentological and paleontological data indicate that an initial marine transgression led to the establishment of a gravelly and sandy shore. Subsequently, an agitated lagoon with shallow-marine sublittoral conditions and a diverse mollusc fauna developed. Diminishing accommodation space forced the development of a restricted, muddy lagoon. A rather hostile environment and probably hypersaline conditions led to the disappearance of metazoans and triggered the formation of a short succession of microbialites. Minor oscillations of the relative sea-level are reflected by alternations of undulate/planar stromatolites to domal stromatolites and distorted stromatolites with frequent emersion surfaces. The microbialites can be traced across a large area of the basin. They are coeval with the thick evaporites of the Carpathian Foredeep and the Transylvanian Basin, which formed during the Badenian salinity crisis. This coincidence suggests that the mid-Badenian Paratethyan stromatolites are ecological analogs of Mediterranean stromatolites that formed during the Messinian salinity crisis.


Microbialites Molluscs Miocene Badenian Paratethys Sea Badenian salinity crisis 


  1. Abels HA, Hilgen FJ, Krijgsman W, Kruk RW, Raffi I, Turco E, Zachariasse WJ (2005) Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20:1–17CrossRefGoogle Scholar
  2. Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites with illustrations from the Cambrian and Ordovician of southwestern Alberta. J Sediment Petrol 37:1163–1178CrossRefGoogle Scholar
  3. Alexander RR, Dietl GP (2005) Non-predatory shell damage in Neogene Western Atlantic deep-burrowing bivalves. Palaios 20:280–295CrossRefGoogle Scholar
  4. Allmon WD (1988) Ecology of recent Turritellinae gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios 3:259–284CrossRefGoogle Scholar
  5. Andres MS, Reid RP (2006) Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas. Sediment Geol 185:319–328CrossRefGoogle Scholar
  6. Arenas C, Pomar L (2010) Microbial deposits in upper Miocene carbonates, Mallorca, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 297:465–485CrossRefGoogle Scholar
  7. Babel M, Olszewska-Nejbert D, Nejbert K (2010) The largest giant gypsum intergrowths from the Badenian (Middle Miocene) evaporites of the Carpathian Foredeep. Geol Quart 54:477–486Google Scholar
  8. Berggren WA, Kent DV III, Swisher C, Aubry MP (1995) A revised Cenozoic geochronology and chronostratigraphy. SEPM Spec Publ 54:129–212Google Scholar
  9. Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44CrossRefGoogle Scholar
  10. Braga JC, Martín JM (2000) Subaqueous siliciclastic stromatolites. A case history from late Miocene beach deposits in the Sorbas Basin of SE Spain. In: Riding RE, Awramik SW (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 226–232CrossRefGoogle Scholar
  11. Braga JC, Martín JM, Riding R (1995) Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, S.E. Spain. Palaios 10:347–361CrossRefGoogle Scholar
  12. Calvet F, Zamarreño I, Vallès D (1996) Late Miocene reefs of the Alicante-Elche basin, southeast Spain. In: Franseen EK, Esteban M, Ward WC, Rouchy JM (eds) Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions. SEPM, Concepts Sediment Paleont Ser 5:177–190Google Scholar
  13. Cornée J–J, Moissette P, Saint Martin J-P, Kázmér M, Tóth E, Görög Á, Dulai A, Müller P (2009) Marine carbonate systems in the Sarmatian (Middle Miocene) of the Central Paratethys: the Zsámbék Basin of Hungary. Sedimentology 56:1728–1750CrossRefGoogle Scholar
  14. d’Amico C, Esu D, Girotti O (2012) Tortonian gastropods and bivalves from a transgressive succession near Cessaniti (Italy: Calabria). Arch Molluskenk 141:155–195Google Scholar
  15. Daoud H, Bucur II, Bruchental C (2006) Microbialitic structures in the Sarmatian carbonate deposits from Şimleu Basin, Romania. Stud Univ Babeş-Bolyai Geol 51:3–13Google Scholar
  16. de Leeuw A, Bukowski K, Krijgsman W, Kuiper KF (2010) Age of the Badenian salinity crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology 38:715–718CrossRefGoogle Scholar
  17. Draganits E (1996) Kristallingeologische Neubearbeitung des südlichen Ödenburger Gebirges, Burgenland (Österreich). Diploma thesis, University of Vienna, p 151 p. http://othes.univie.ac.at/157/1/Draganits_1996_Diplomarbeit.pdf
  18. Draganits E (1998) Seriengliederung im Kristallin des südlichen Ödenburger Gebirges (Burgenland) und deren Stellung zum Unterostalpin am Alpenostrand. Jb Geol BA 141:113–146Google Scholar
  19. Draganits E, Noffke N (2004) Siliciclastic stromatolites and other microbially induced sedimentary structures in an Early Devonian barrier-island environment (Muth Formation, NW Himalayas). J Sediment Res 74:191–202CrossRefGoogle Scholar
  20. Esteban M (1996) An overview of Miocene reefs from Mediterranean areas: general trends and facies models. In: Franseen EK, Esteban M, Ward WC, Rouchy JM (eds) Models for carbonate stratigraphy from Miocene reef complexes of the Mediterranean regions: SEPM Concepts Sediment Paleont Ser 5:3–53Google Scholar
  21. Feldman M, McKenzie JA (1998) Stromatolite–thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201–212CrossRefGoogle Scholar
  22. Feldmann M, McKenzie JA (1997) Messinian stromatolite-thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic? Sedimentology 44:893–914CrossRefGoogle Scholar
  23. Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin Heidelberg New York, p 976Google Scholar
  24. Grill R (1943) Über mikropaläontologische Gliederungsmöglichkeiten im Miozän des Wiener Beckens. Mitt. RA Bodenforsch 6:33–44Google Scholar
  25. Harzhauser M, Kowalke T (2002) Sarmatian (Late Middle Miocene) gastropod assemblages of the Central Paratethys. Facies 46:57–82CrossRefGoogle Scholar
  26. Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31CrossRefGoogle Scholar
  27. Harzhauser M, Piller WE (2010) Molluscs as a major part of subtropical shallow-water carbonate production—an example from a Middle Miocene oolite shoal (Upper Serravallian, Austria). IAS Spec Publ 42:185–200Google Scholar
  28. Hohenegger J, Ćorić S, Khatun M, Pervesler P, Rögl F, Rupp C, Selge A, Uchman A, Wagreich M (2012) Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core. Int J Earth Sci 98:915–930CrossRefGoogle Scholar
  29. Holbourn A, Kuhnt W, Schulz M, Flores JA, Andersen N (2007) Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet Sci Lett 261:534–550CrossRefGoogle Scholar
  30. Houbrick RS (1991) Systematic review and functional morphology of the mangrove snails Terebralia and Telescopium (Potamididae, Prosobranchia). Malacologia 33:289–338Google Scholar
  31. Jahnert RJ, Collins LB (2011) Significance of subtidal microbial deposits in Shark Bay, Australia. Mar Geol 286:106–111CrossRefGoogle Scholar
  32. Jahnert RJ, Collins LB (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Mar Geol 303–306:115–136CrossRefGoogle Scholar
  33. Jahnert RJ, Collins LB (2013) Controls on microbial activity and tidal flat evolution in Shark Bay, Western Australia. Sedimentology 60:1071–1099CrossRefGoogle Scholar
  34. Janoschek RH (1931) Die Geschichte des Nordrandes der Landseer Bucht im Jungtertiär: (Mittleres Burgenland). Mitt Geol Ges Wien 24:38–133Google Scholar
  35. Johnson ME, Ledesma-Vázquez J, Backus DH, González MR (2012) Lagoon microbialites on Isla Angel de la Guarda and associated peninsular shores, Gulf of California, Mexico. Sediment Geol 263–264:76–84CrossRefGoogle Scholar
  36. Kisházi P, Ivancsics J (1977) Rekonstruktion der geologisch-lagerstättenkundlichen Verhältnisse des Braunkohlenbeckens von Brennberg. Mitt Ungar Forsch Inst Bergbau 20:103–108Google Scholar
  37. Kováč M, Barath I, Harzhauser M, Hlavaty I, Hudackova N (2004) Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour Forsch Inst Senckenberg 246:187–212Google Scholar
  38. Kowalke T (2001) Protoconch morphology, ontogenetical development and ecology of three species of the genus Potamides Brongniart, 1810, and a discussion of the evolutionary history of the Potamididae (Caenogastropoda: Cerithiimorpha: Cerithioidea). Paläontologie, Stratigraphie, Fazies. Freiberg Forschungshefte C 492:27–42Google Scholar
  39. Martín JM, Braga JC (1994) Messinian events in the Sorbas Basin in the southeastern Spain and their implications in the recent history of the Mediterranean. Sediment Geol 90:257–268CrossRefGoogle Scholar
  40. Martín JM, Braga JC, Riding R (1993) Siliciclastic stromatolites and thrombolites, Late Miocene, S.E. Spain. J Sediment Petrol 63:131–139Google Scholar
  41. Mostafavi M (1978) Die Neogenentwicklung am Nordrand des Oberpullendorfer Beckens (Burgenland). Mitt Ges Geol Bergbaustud Österreich 25:111–143Google Scholar
  42. Murray JW (1991) Ecology and palaeoecology of benthic foraminifera. Longman Scientific and Technical, Essex, p 397Google Scholar
  43. Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge, p 438CrossRefGoogle Scholar
  44. Oliveri E, Neri R, Bellanca A, Riding R (2010) Carbonate stromatolites from a Messinian hypersaline setting in the Caltanissetta Basin, Sicily: petrographic evidence of microbial activity and related stable isotope and rare earth element signatures. Sedimentology 57:142–161CrossRefGoogle Scholar
  45. Peryt TM (2006) The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys. Sediment Geol 188:379–396CrossRefGoogle Scholar
  46. Peryt TM (2013) Palaeogeographical zonation of gypsum facies: Middle Miocene Badenian of Central Paratethys (Carpathian Foredeep in Europe). J Palaeogeogr 2:225–237Google Scholar
  47. Peryt TM, Peryt D, Jasionowski M, Poberezhskyy AV, Durakiewicz T (2004) Post-evaporitic restricted deposition in the Middle Miocene Chokrakian–Karaganian of East Crimea (Ukraine). Sediment Geol 170:21–36CrossRefGoogle Scholar
  48. Piller WE, Harzhauser M (2005) The myth of the brackish Sarmatian Sea. Terra Nova 17:450–455CrossRefGoogle Scholar
  49. Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168Google Scholar
  50. Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kováč M (2004) Lithological-paleogeographic maps of Paratethys. 10 Maps, Late Eocene to Pliocene. Cour Forsch Inst Senckenberg 250:1–46Google Scholar
  51. Reid RP, Vissher PT, Decho AW, Stolt JF, Bebout BM, Dupraz C, MacIntyre IG, Pearl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–991CrossRefGoogle Scholar
  52. Reidy RD, Cox SP (2013) Geoduck clam (Panopea abrupta) demographics and mortality rates in the presence of sea otters (Enhydra lutris) and commercial harvesting. Open Fish Sci J 6:28–40CrossRefGoogle Scholar
  53. Riding R (2011) Microbialites, stromatolites and thrombolites. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Encyclopedia of Earth Science Series. Springer, Berlin Heidelberg New York, pp 635–654Google Scholar
  54. Riding R, Awramik SM (2000) Microbial sediments. Springer, Berlin Heidelberg New York, p 331CrossRefGoogle Scholar
  55. Riding R, Braga JC, Martín JM (1991) Oolite stromatolites and thrombolites, Miocene, Spain: analogues of recent giant Bahamian examples. Sediment Geol 71:121–127CrossRefGoogle Scholar
  56. Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Nat Hist Mus Wien 99:279–310Google Scholar
  57. Rufino MR, Gaspar MB, Pereira AM, Maynou F, Monteiro CC (2010) Ecology of megabenthic bivalve communities from sandy beaches on the south coast of Portugal. Sci Mar 74:163–178CrossRefGoogle Scholar
  58. Rupprecht D (2011) Lithostratigraphie, Ablagerungsbedingungen und Deformationsstrukturen klastischer Sedimente des Badeniums (Ritzing-Neustift, Mittleres Burgenland). Unpubl Bachelor thesis, University of Vienna, p 28Google Scholar
  59. Rützler K (1975) The role of burrowing sponges in bioerosion. Oecologia 19:203–216CrossRefGoogle Scholar
  60. Saint-Martin J-P, Müller P, Moissette P, Dulai A (2000) Coral microbialite environment in a Middle Miocene reef of Hungary. Palaeogeogr Palaeoclimatol Palaeoecol 160:179–191CrossRefGoogle Scholar
  61. Schulz H-M, Bechtel A, Sachsenhofer RF (2005) The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue? Glob Planet Change 49:163–176CrossRefGoogle Scholar
  62. Seckbach J, Oren A (2010) Microbial mats: modern and ancient microorganisms in stratified systems. Springer, Berlin Heidelberg New York, p 606CrossRefGoogle Scholar
  63. Shapiro RS (2000) A comment on the systematic confusion of thrombolites. Palaios 15:166–169CrossRefGoogle Scholar
  64. Sieber R (1956) Bericht 1955 über paläontologisch—stratigraphische Untersuchungen im Tertiär von Mattersburg und Ritzing (Bgld.). Verhand Geol BA 1956:119–120Google Scholar
  65. Strauss P, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic-based integrated approach. Geol Carpath 57:185–197Google Scholar
  66. Székely B, Zámolyi A, Draganits E, Briese C (2009) Geomorphic expression of neotectonic activity in a low relief area in an Airborne Laser Scanning DTM: a case study of the Little Hungarian Plain (Pannonian basin). Tectonophysics 474:353–366CrossRefGoogle Scholar
  67. Talman SG, Keough MJ (2001) Impact of an exotic clam, Corbula gibba, on the commercial scallop Pecten fumatus in Port Phillip Bay, south-east Australia: evidence of resource-restricted growth in a subtidal environment. Mar Ecol Progr Ser 221:135–143CrossRefGoogle Scholar
  68. Vasiliev I, Iosifidi AG, Khramov AN, Krijgsman W, Kuiper KF, Langereis CG, Popov VV, Stoica M, Tomsha VA, Yudin SV (2011) Magnetostratigraphy and radiometric dating of upper Miocene—lower Pliocene sedimentary successions of the Black Sea Basin (Taman Peninsula, Russia). Palaeogeogr Palaeoclimatol Palaeoecol 310:163–175CrossRefGoogle Scholar
  69. Vendl M (1933) Daten zur Geologie von Brennberg und Sopron—mit besonderer Rücksicht auf die Tektonik von Brennberg. Mitt berg-hüttenmänn Abt könig ungar Hochsch Berg Forstwesen Sopron Ungarn 5:386–412Google Scholar
  70. Westerhold T, Bickert T, Röhl U (2005) Middle to late Miocene oxygen isotope stratigraphy of ODP Site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations. Palaeogeogr Palaeoclimatol Palaeoecol 217:205–222CrossRefGoogle Scholar
  71. Zorn I (2000) Das Paläogen und Neogen. In: Schönlaub HP (ed) Erläuterungen zur Geologischen Karte des Burgenlandes 1:200.000—Geologie der Österreichischen Bundesländer. Geologische Bundesanstalt, Wien, pp 15–30Google Scholar
  72. Zuschin M, Harzhauser M, Mandic O (2004) Palaeoecology and taphonomy of a single parautochthonous Paratethyan tidal flat deposit (Karpatian, Lower Miocene—Kleinebersdorf, Lower Austria). Cour Forsch Inst Senckenberg 246:153–168Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mathias Harzhauser
    • 1
  • Jörn Peckmann
    • 2
  • Daniel Birgel
    • 2
  • Erich Draganits
    • 2
    • 3
  • Oleg Mandic
    • 1
  • Dörte Theobalt
    • 1
  • Julian Huemer
    • 2
  1. 1.Geological-Paleontological DepartmentNatural History Museum ViennaViennaAustria
  2. 2.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria
  3. 3.Department of Prehistoric and Historical ArchaeologyUniversity of ViennaViennaAustria

Personalised recommendations