Advertisement

Facies

, Volume 60, Issue 1, pp 15–37 | Cite as

Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway)

  • S. Teichert
  • W. Woelkerling
  • A. Rüggeberg
  • M. Wisshak
  • D. Piepenburg
  • M. Meyerhöfer
  • A. Form
  • A. Freiwald
Original Article

Abstract

Coralline algae (Corallinales, Rhodophyta) that form rhodoliths are important ecosystem engineers and carbonate producers in many polar coastal habitats. This study deals with rhodolith communities from Floskjeret (78°18′N), Krossfjorden (79°08′N), and Mosselbukta (79°53′N), off Spitsbergen Island, Svalbard Archipelago, Norway. Strong seasonal variations in temperature, salinity, light regime, sea-ice coverage, and turbidity characterize these localities. The coralline algal flora consists of Lithothamnion glaciale and Phymatolithon tenue. Well-developed rhodoliths were recorded between 27 and 47 m water depth, while coralline algal encrustations on lithoclastic cobbles were detected down to 77 m water depth. At all sites, ambient waters were saturated with respect to both aragonite and calcite, and the rhodolith beds were located predominately at dysphotic water depths. The rhodolith-associated macrobenthic fauna included grazing organisms such as chitons and echinoids. With decreasing water depth, the rhodolith pavements were regularly overgrown by non-calcareous Polysiphonia-like red algae. The corallines are thriving and are highly specialized in their adaptations to the physical environment as well as in their interaction with the associated benthic fauna, which is similar to other polar rhodolith communities. The marine environment of Spitsbergen is already affected by a climate-driven ecological regime shift and will lead to an increased borealization in the near future, with presently unpredictable consequences for coralline red algal communities.

Keywords

Depth gradient Environmental parameters Lithothamnion glaciale Phymatolithon tenue Rhodolith community Seasonality Spitsbergen 

Notes

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (FR 1134/18). Mean water temperatures and salinities are based on data from LEVITUS 94, available from: http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/. Annual sea ice formation and breakup data are based on AMSR-E Sea Ice Maps, available from: http://www.iup.uni-bremen.de:8084/amsr/. Polar night duration data are based on USNO Sun Rise Tables, available from: http://aa.usno.navy.mil/data/docs/RS_OneYear.php. The authors would like to thank the captain and the crew of Maria S. Merian, the JAGO operating team (GEOMAR), Dirk Fleischer (Kiel) for helping with benthos sampling, and Ines Pyko for her work as research assistant. We thank both anonymous reviewers for providing helpful comments that resulted in an improved manuscript.

References

  1. Adey WH (1964) The genus Phymatolithon in the Gulf of Maine. Hydrobiologia 24:377–420CrossRefGoogle Scholar
  2. Adey WH (1966a) The genera Lithothamnium, Leptophytum (nov. gen.) and Phymatolithon in the Gulf of Maine. Hydrobiologia 28:321–370CrossRefGoogle Scholar
  3. Adey WH (1966b) Distribution of saxicolous crustose corallines in the northwestern North Atlantic. J Phycol 2:49–54CrossRefGoogle Scholar
  4. Adey WH (1970a) Some relationships between crustose corallines and their substrate. Sci Isl 2:21–25Google Scholar
  5. Adey WH (1970b) The effects of light and temperature on growth rates in boreal-subarctic crustose corallines. J Phycol 6:269–276Google Scholar
  6. Adey WH, Adey P (1973) Studies on the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. Br Phycol J 8:1–60CrossRefGoogle Scholar
  7. Adey WH, Macintyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geol Soc Am Bull 84:883–904CrossRefGoogle Scholar
  8. Adey WH, McKibbin DL (1970) Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnion corallioides Crouan in the Ria de Vigo. Bot Mar 13:100–106CrossRefGoogle Scholar
  9. Adey WH, Athanasiadis A, Lebednik PA (2001) Re-instatement of Leptophytum and its type Leptophytum laeve: taxonomy and biogeography of the genera Leptophytum and Phymatolithon (Corallinales, Rhodophyta). Eur J Phycol 36:191–203Google Scholar
  10. Adey WH, Chamberlain YM, Irvine LM (2005) An SEM-based analysis of the morphology, anatomy, and reproduction of Lithothamnion tophiforme (Esper) Unger (Corallinales, Rhodophyta), with a comparative study of associated North Atlantic arctic/subarctic Melobesioideae. J Phycol 41:1010–1024CrossRefGoogle Scholar
  11. Athanasiadis A (2007) The genus Leptophytum (Melobesioideae, Corallinales, Rhodophyta) in NW Spitsbergen. Nord J Bot 24:469–499CrossRefGoogle Scholar
  12. Athanasiadis A, Adey WH (2003) Proposal to conserve the name Lithophyllum laeve Strömfelt against L. laeve Kützing (Corallinales, Rhodophyta) with a conserved type. Taxon 52:342–350CrossRefGoogle Scholar
  13. Athanasiadis A, Adey WH (2006) The genus Leptophytum (Melobesioideae, Corallinales, Rhodophyta) on the Pacific coast of North America. Phycologia 45:71–115CrossRefGoogle Scholar
  14. Bosence DWJ (1976) Ecological studies on two carbonate sediment producing coralline algae from western Ireland. Palaeontology 19:365–395Google Scholar
  15. Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 217–224CrossRefGoogle Scholar
  16. Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths—a review. In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 225–242CrossRefGoogle Scholar
  17. Bosence DWJ (1991) Coralline algae: mineralization, taxonomy, and palaeoecology. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 98–113CrossRefGoogle Scholar
  18. Clarke A, Harris CM (2003) Polar marine ecosystems: major threats and future change. Environ Conserv 30:1–25CrossRefGoogle Scholar
  19. Compère P (2004) Report of the Committee for Algae: 8. Taxon 53:1065–1067CrossRefGoogle Scholar
  20. Coutinho R, Seelinger U (1984) The horizontal distribution of the benthic algal flora in the Patos Lagoon estuary, Brazil, in relation to salinity, substratum and wave exposure. J Exp Mar Biol Ecol 80:247–257CrossRefGoogle Scholar
  21. Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80:185–197CrossRefGoogle Scholar
  22. Düwel L, Wegeberg S (1996) The typification and status of Leptophytum (Corallinaceae, Rhodophyta). Phycologia 35:470–483CrossRefGoogle Scholar
  23. Fleischer D, Schaber M, Piepenburg D (2007) Atlantic snake pipefish (Entelurus aequoreus) extends its northward distribution range to Svalbard. Polar Biol 30:1359–1362CrossRefGoogle Scholar
  24. Fortunato H, Schäfer P (2009) Coralline algae as carbonate producers and habitat providers on the Eastern Pacific coast of Panamá: preliminary assessment. N Jb Geol Paläont Abh 253:145–161CrossRefGoogle Scholar
  25. Forwick M, Vorren TO (2009) Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeogr Palaeoclimatol Palaeoecol 280:258–274CrossRefGoogle Scholar
  26. Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667CrossRefGoogle Scholar
  27. Freiwald A (1993) Subarktische Kalkalgenriffe im Spiegel hochfrequenter Meeresspiegelschwankungen und interner biologischer Steuerungsprozesse. PhD Thesis, University of Kiel, KielGoogle Scholar
  28. Freiwald A (1995) Sedimentological and biological aspects in the formation of branched rhodoliths in northern Norway. Beitr Paläont 20:7–19Google Scholar
  29. Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984CrossRefGoogle Scholar
  30. Graham DJ, Midgley NG (2000) Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surf Proc Land 25:1473–1477CrossRefGoogle Scholar
  31. Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol Acta 5:209–218Google Scholar
  32. Hall-Spencer JM (1994) Biological studies on non-geniculate Corallinaceae. PhD Thesis, University of London, LondonGoogle Scholar
  33. Hall-Spencer JM, Atkinson RJA (1999) Upogebia deltaura (Crustacea: Thalassinidea) in Clyde Sea maerl beds, Scotland. J Mar Biol Assoc UK 79:871–880CrossRefGoogle Scholar
  34. Hall-Spencer J, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley S, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRefGoogle Scholar
  35. Harland WB (1997) The geology of Svalbard. The Geological Society, London 521 pGoogle Scholar
  36. Harvey A, Woelkerling WJ, Millar AJK (2003) An account of the Hapalidiaceae (Corallinales, Rhodophyta) in south-eastern Australia. Aust Syst Bot 16:647–698CrossRefGoogle Scholar
  37. Henriques MC, Villas-Boas A, Riosmena-Rodriguez R, Figueiredo MAO (2012) New records of rhodolith-forming species (Corallinales, Rhodophyta) from deep water Espírito State, Brazil. Helgol Mar Res 66:219–231CrossRefGoogle Scholar
  38. IPCC (2007) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  39. Irvine LM, Chamberlain YM (1994) Rhodophyta Part 2B Corallinales, Hildenbrandiales. The Natural History Museum, LondonGoogle Scholar
  40. Jackson A (2003) Lithothamnion glaciale. Maerl. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme (online). Marine Biological Association of the United Kingdom, Plymouth. http://www.marlin.ac.uk/reproduction.php?speciesID=3711 (Accessed 15 May 2011)
  41. Johnson CR, Mann KH (1986a) The crustose coralline alga Phymatolithon Foslie inhibits the overgrowth of seaweeds without relying on herbivores. J Exp Mar Biol Ecol 96:127–146CrossRefGoogle Scholar
  42. Johnson CR, Mann KH (1986b) The importance of plant defence abilities to the structure of subtidal seaweed communities: the kelp Laminaria longicruris de la Pylaie survives grazing by the snail Lacuna vincta (Montagu) at high population densities. J Exp Mar Biol 97:231–267CrossRefGoogle Scholar
  43. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  44. Kain JM, Norton TA (1990) Marine ecology. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, New York, pp 377–422Google Scholar
  45. Kamenos NA, Moore PG, Hall-Spencer JM (2004a) Attachment of the juvenile queen scallop (Aequipecten opercularis (L.)) to maerl in mesocosm conditions; juvenile habitat selection. J Exp Mar Biol Ecol 306:139–155CrossRefGoogle Scholar
  46. Kamenos NA, Moore PG, Hall-Spencer JM (2004b) Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? ICES J Mar Sci 61:422–429CrossRefGoogle Scholar
  47. Kamenos NA, Cusack M, Huthwelker T, Lagarde P, Scheibling RE (2009) Mg-lattice associations in red coralline algae. Geochim Cosmochim Acta 73:1901–1907CrossRefGoogle Scholar
  48. King RJ, Schramm W (1982) Calcification in the maerl coralline alga Phymatolithon calcareum, effects of salinity and temperature. Mar Biol 70:197–204CrossRefGoogle Scholar
  49. Kjellman FR (1875a) Förberedande anmárkningar om algvegetationen i Mosselbay enligt iakttagelser under vinterdragningar anställda af Svenska palarexpeditionen 1872–1873. Öfvers Kong Vetensk-Akad Förhandl 1875:59–68Google Scholar
  50. Kjellman FR (1875b) Om Spetsbergens marina, klorofullförande thallophyter I. Bih Till Kung Svenska Vetensk Handl 3:1–34Google Scholar
  51. Kjellman FR (1883) Norra Ishafvets Algflora. Vega-expeditionens Vetensk Iakt 3:1–431 [Note: subsequently published in English (Kjellman 1885)]Google Scholar
  52. Kjellman FR (1885) The algae of the Arctic Sea. Kong Svenska Vetensk Akad Handl 20:1–350 [Note: dated 1885 but first published in 1883. The original version (Kjellman 1883) is written in Swedish]Google Scholar
  53. Konar B, Iken K (2005) Competitive dominance among sessile marine organisms in a high Arctic boulder community. Polar Biol 29:61–64CrossRefGoogle Scholar
  54. Konar B, Riosmena-Rodriguez R, Iken K (2006) Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Bot Mar 49:355–359CrossRefGoogle Scholar
  55. Lherminier P, Meincke J, Freiwald A, Schauer J (2009) Circulation and ecosystems in the Subpolar and Polar North Atlantic, Cruise No. 2, May 23–September 16, 2006. MARIA S. MERIAN-Berichte 9(1), Universität HamburgGoogle Scholar
  56. Littler MM, Kauker BJ (1984) Heterotrichy and survival strategies in the red alga Corallina officinalis. Bot Mar 27:37–44CrossRefGoogle Scholar
  57. Littler MM, Littler DS, Taylor PR (1983) Evolutionary strategies in a tropical barrier reef system: functional-form groups of marine macroalgae. J Phycol 19:229–237CrossRefGoogle Scholar
  58. Lüder UH, Wiencke C, Knoetzel J (2002) Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta): a study to simulate Antarctic winter sea ice cover. J Phycol 38:904–913CrossRefGoogle Scholar
  59. Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. Wiley Interscience, New YorkGoogle Scholar
  60. Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692CrossRefGoogle Scholar
  61. Milliken B, Steneck RS (1981) The branching morphology of crustose corallines as a structural defence against herbivores and a refuge for filamentous algae. In: Abstracts of papers and posters to be presented at the 20th Northeast Algal Symposium April 11–12, 1981. Marine Biological Laboratory, Woods Hole, p 16Google Scholar
  62. Nelson WA (2009) Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801CrossRefGoogle Scholar
  63. Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord-shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Waters in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853CrossRefGoogle Scholar
  64. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RM, Gnanadesikan A, Gruber N, Ishida A, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  65. Orvik KA, Niiler P (2002) Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas towards Arctic. Geophys Res Lett 29:1896–1899CrossRefGoogle Scholar
  66. Ottesen D, Dowdeswell JA, Landvik JY, Mienert J (2007) Dynamics of the Late Weichselian ice sheet on Svalbard inferred from high-resolution sea-floor morphology. Boreas 36:286–306CrossRefGoogle Scholar
  67. Prud’homme van Reine WF (2011) Report of the Nomenclature Committee for Algae: 10. Taxon 60:585–587Google Scholar
  68. Roberts RD, Kühl M, Glud RN, Rysgaard S (2002) Primary production of crustose coralline algae in a high Arctic fjord. J Phycol 38:273–283CrossRefGoogle Scholar
  69. Rosenvinge LK (1893) Grønlands Havalger. Med Grønland 3:765–981Google Scholar
  70. Sapota G, Wojtasik B, Burska D, Nowiński K (2009) Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from selected fjords, tidal plains and lakes of the north Spitsbergen. Polar Res 30:59–76Google Scholar
  71. Schlitzer R (2012) Ocean data view. http://odv.awi.de
  72. Sexton DJ, Dowdeswell JA, Solheim A, Elverhøi A (1992) Seismic architecture and sedimentation in north-west Spitsbergen fjords. Mar Geol 103:53–68CrossRefGoogle Scholar
  73. Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas. A study in particle morphogenesis. J Geol 66:114–150CrossRefGoogle Scholar
  74. Spreen G, Kaleschke L, Heygster G (2008) AMSR-E ASI 6.25 km Sea ice concentration data, V5.4. Institute of Oceanography, University of Hamburg, Germany, digital media. ftp://ftp-projects.zmaw.de/seaice/ (Accessed 21 April 2011)
  75. Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533CrossRefGoogle Scholar
  76. Steller DL, Riosmena-Rodriguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv 13:5–20CrossRefGoogle Scholar
  77. Steneck RS (1983) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:44–61Google Scholar
  78. Steneck RS (1985) Adaptations of crustose coralline algae to herbivory: Patterns in space and time. In: Toomey DF, Nitecki MH (eds) Paleoalgology. Springer, Berlin Heidelberg New York, pp 352–366CrossRefGoogle Scholar
  79. Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annu Rev Ecol Syst 17:273–303CrossRefGoogle Scholar
  80. Steneck RS (1990) Herbivory and the evolution of nongeniculate coralline algae (Rhodophyta, Corallinales) in the North Atlantic and North Pacific. In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marine algae of the North Atlantic. Springer, Berlin Heidelberg New York, pp 107–129CrossRefGoogle Scholar
  81. Stoll MHC, Bakker K, Nobbe GH, Haese RR (2001) Continuous-flow analysis of dissolved inorganic carbon content in seawater. Anal Chem 73:4111–4116CrossRefGoogle Scholar
  82. Strömfelt HFG (1886) Om Algevegetationen vid Islands Kuster. D.F. Bonniers, GöteborgGoogle Scholar
  83. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  84. Teichert S, Woelkerling W, Rüggeberg A, Wisshak M, Piepenburg D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago). Phycologia 51:371–390CrossRefGoogle Scholar
  85. Watson DC, Norton TA (1985) The physical characteristics of seaweed thalli as deterrents to littorine grazers. Bot Mar 28:383–387CrossRefGoogle Scholar
  86. Węslawski JM, Koszteyn J, Ząjaczkowski M, Wiktor J, Kwaśniewski S (1995) Fresh water in Svalbard fjord ecosystems. In: Skjoldal HR, Hopkins C, Erikstad KE, Leinaa HP (eds) Ecology of fjords and coastal waters. Elsevier Science, Amsterdam, pp 229–241Google Scholar
  87. Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 120:279–289CrossRefGoogle Scholar
  88. Woelkerling WJ (1988) The Coralline red algae: An analysis of the genera and subfamilies of nongeniculate Corallinaceae. British Museum (Natural History)/Oxford University Press, London/OxfordGoogle Scholar
  89. Woelkerling WJ, Irvine LM (1986) The neotypification and status of Phymatolithon (Corallinaceae, Rhodophyta). Br Phycol J 21:55–80CrossRefGoogle Scholar
  90. Woelkerling WJ, Furnari G, Cormaci M (2002) Leptophytum (Corallinaceae, Rhodophyta): to be or not to be? That is the question, but what is the answer? Aust Syst Bot 15:597–618CrossRefGoogle Scholar
  91. Woelkerling WJ, Gustavsen G, Myklebost HE, Prestø T, Såstad S (2005) The Coralline Red Algal Herbarium of Mikael Foslie: revised Catalogue with Analyses. Gunneria 77:1–625Google Scholar
  92. Womersley HBS (1979) Southern Australian species of Polysiphonia Greville (Rhodophyta). Aust J Bot 27:459–528CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Teichert
    • 1
  • W. Woelkerling
    • 2
  • A. Rüggeberg
    • 3
    • 4
  • M. Wisshak
    • 5
  • D. Piepenburg
    • 6
  • M. Meyerhöfer
    • 7
  • A. Form
    • 7
  • A. Freiwald
    • 5
    • 8
  1. 1.GeoZentrum NordbayernFachgruppe PaläoumweltErlangenGermany
  2. 2.La Trobe University, Department of BotanyBundooraAustralia
  3. 3.Ghent University, Renard Centre of Marine GeologyGentBelgium
  4. 4.GEOMAR, Helmholtz Centre for Ocean ResearchKielGermany
  5. 5.Senckenberg am Meer, Marine Research DepartmentWilhelmshavenGermany
  6. 6.Akademie der Wissenschaften und der Literatur Mainzc/o Institut für Polarökologie, Universität KielKielGermany
  7. 7.GEOMAR, Helmholtz Centre for Ocean ResearchMarine BiogeochemistryKielGermany
  8. 8.MARUM, Center for Marine Environmental SciencesBremenGermany

Personalised recommendations