, Volume 59, Issue 4, pp 949–967 | Cite as

New insights on the red alga Archaeolithophyllum and its preservation from the Pennsylvanian of the Cantabrian Zone (NW Spain)

  • D. CorrochanoEmail author
  • D. Vachard
  • I. Armenteros
Original Article


The new species Archaeolithophyllum asymmetricum nov. sp., from the Bachende Formation (Pennsylvanian, Cantabrian Zone, NW Spain), is described herein using cathodoluminescence microscopy. Under plane-polarized light, A. asymmetricum occurs as elongate and arcuate sheets preserved as calcitic mosaics of tiny anhedral to subhedral crystals. Cathodoluminescence has revealed that skeletal walls are composed of dull-bright (locally bright) luminescent calcite that contrasts sharply with the nonluminescent cements filling the intraskeletal pores. Skeletal walls are currently composed of low-Mg calcite (0.5–2 mol % MgCO3) with low Sr content (average 415 ppm). A. asymmetricum shows a strong asymmetry of the thallus organization. The internal tissue is well differentiated into a thick medullar hypothallus and a thin upper cortical perithallus, the latter being composed of nearly rectangular cells arranged in rows perpendicular to the external surface. Cell fusions commonly occur in the perithallial tissue whereas conceptacles exhibit a highly arched geometry lacking any preserved aperture. A. asymmetricum accumulations display a growth pattern similar to that reported from Late Paleozoic “phylloid algae”, and also resemble Miocene frameworks of the corallinacean Mesophyllum. These accumulations of A. asymmetricum formed micrite-rich bioherms with abundant shelter porosities, which are filled up with radiaxial-fibrous calcite (originally high-Mg calcite) and subsequent blocky spar. They constructed a rigid framework that was basically a combination of the foliaceous growth form, crust fusion and division, and synsedimentary marine cementation. Paleontological and sedimentological evidence suggests that A. asymmetricum thrived in an outer platform environment with relative quiet conditions. The exceptional preservation of these algae was favored by a rapid cementation of the intraskeletal pores under oxidizing conditions in a marine phreatic environment, protecting skeletons from early dissolution and recrystallization. Although the resulting neomorphic microsparite fabric suggests an aragonite precursor, the morphological similarities (especially reproductive organs) between Archaeolithophyllum and Recent calcitic corallinaceans, and the similar trace element composition of the algal thalli and the surrounding high-Mg radiaxial-fibrous cements, suggest that originally, Archaeolithophyllum was probably composed of high-Mg calcite. Based on the morphologic features, framework strategies (crust fusion and division) and growth modes, it is suggested that Archaeolithophyllum might be phylogenetically related to the modern coralline algae.


“Phylloid algae” Cathodoluminescence Archaeolithophyllum Pennsylvanian Cantabrian Zone Spain 



Thanks are due to P. Barba for logging assistance. SIEMCALSA S.A. is thanked for all the facilities providing access to the core material of the Salamón Gold District. The constructive reviews and helpful suggestions of Brenda Kirkland and Elias Samankassou, strongly improved the original manuscript. This work was supported by the Spanish MICINN project CGL2004-02645/BTE.


  1. Aguirre J, Barattolo F (2001) Presence of nemathecia in Parachaetetes asvapatii Pia, 1936 (Rhodophyta, Gigartinales?): reproduction in ‘solenoporaceans’ revisited. Palaeontology 44:1113–1125CrossRefGoogle Scholar
  2. Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26:651–667CrossRefGoogle Scholar
  3. Anderson KD, Beauchamp B (2010) The origin and ecology of late Paleozoic Palaeoaplysina in Arctic Canada: an aberrant ancestral coralline alga that grew at a time of high atmospheric CO2. In: GeoCanada conference abstract, Calgary, Alberta, 2010Google Scholar
  4. Aponte NE, Ballantine DL (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res Part I 48:2185–2194CrossRefGoogle Scholar
  5. Baars DL (1992) Kansaphyllum, a new Late Pennsylvanian phylloid algal genus. Palaeontology 66:697–701Google Scholar
  6. Baars DL, Torres AM (1991) Late Paleozoic phylloid algae, a pragmatic review. Palaios 6:513–515CrossRefGoogle Scholar
  7. Bahamonde JR, Merino-Tomé O, Heredia N (2007) A Pennsylvanian microbial boundstone-dominated carbonate shelf in a distal foreland margin (Picos de Europa Province, NW Spain). Sediment Geol 198:167–193CrossRefGoogle Scholar
  8. Baker P, Gieskes JM, Elderfield H (1982) Diagenesis of the carbonates in deep-sea sediments: evidence from Sr/Ca ratios and interstitial dissolved Sr2+ data. J Sediment Petrol 52:71–82Google Scholar
  9. Bathurst RGC (1975) Carbonate sediments and their diagenesis. Elsevier, AmsterdamGoogle Scholar
  10. Bathurst RGC (1977) Ordovician Meiklejohn bioherms, Nevada. Geol Mag 114:308–311CrossRefGoogle Scholar
  11. Boggs SJ, Krinsley D (2006) Applications of cathodoluminescence imaging to the study of sedimentary rocks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Borowitzka MA (1989) Carbonate mineralization in algae-initiation and control. In: Mann S, Webb J, Williams RJP (eds) Biomineralization: chemical and biochemical perspectives. VCH Verlagsgesellchaft, Weinheim, pp 63–94Google Scholar
  13. Bosence DWJ (1983) Coralline algae from the Miocene of Malta. Palaeontology 26:147–173Google Scholar
  14. Bosence DWJ (1985) The “Coralligène” of the Mediterranean: a recent analog for Tertiary coralline algal limestones. In: Toomey DF, Nitecki MH (eds) Paleoalgology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Bosence DWJ (2005) A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sediment Geol 175:49–72CrossRefGoogle Scholar
  16. Bruckschen P, Oesmann S, Veizer J (1999) Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chem Geol 161:127–163CrossRefGoogle Scholar
  17. Budd DA (1992) Dissolution of high-Mg calcite fossils and the formation of biomolds during mineralogical stabilization. Carbon Evaporite 7:74–81CrossRefGoogle Scholar
  18. Chuvashov BI, Luchinina VA, Shuysky VP, Shaikin IM, Berchenko OI, Ishchenko AA, Saltovskaya VD, Shirshova DI (1987) Iskopaemye izvestkovye vodorosli morfologiya, sistematika, metody izucheniya. Akad Nauk SSSR, Sib Otdel Trudy Inst Geol Geofiz 674:5–224Google Scholar
  19. Colmenero JR, Fernández LP, Moreno C, Bahamonde JR, Barba P, Heredia N, González F (2002) Carboniferous. In: Gibbons W, Moreno T (eds) The geology of Spain. Geological Society, London, pp 93–116Google Scholar
  20. Corrochano D, Barba P (2007) Estratigrafía, sedimentología y evolución isotópica del tránsito Podolskiense-Myachkoviense (sector Lois-Ciguera, Cuenca Carbonífera Central, Zona Cantábrica). Stud Geol Salmant 43:67–114Google Scholar
  21. Corrochano D, Barba P, Colmenero JR (2012) Glacioeustatic cyclicity of a Pennsylvanian carbonate platform in a foreland basin setting: An example from the Bachende Formation of the Cantabrian Zone (NW Spain). Sediment Geol 245–246:76–93CrossRefGoogle Scholar
  22. Cózar P, Vachard D (2003) Neoprincipia nov. gen., a new Mississippian red alga, and remarks on the Archaeolithophyllaceae (Rhodophyta). Geobios 36:505–517CrossRefGoogle Scholar
  23. Cózar P, Vachard D (2004) Morphological adaptations of late Mississippian problematic alga Calcifolium to fluctuating palaeoecologic environments. Lethaia 37:351–363CrossRefGoogle Scholar
  24. Cózar P, Somerville ID, Medina-Varea P (2005) Note on the earliest occurrences of the calcareous algae Paraepimastopora and Archaeolithophyllum in Mississippian rocks. Coloq Paleont 55:7–20Google Scholar
  25. Crespo JL, Moro MC, Fadón O, Cabrera R, Fernández A (2000) The Salamón gold deposit (León, Spain). J Geoch Explor 71:191–208CrossRefGoogle Scholar
  26. Davies GR (1977) Former magnesium calcite and aragonite submarine cements in Upper Paleozoic reefs of the Canadian Artic: a summary. Geology 5:11–15CrossRefGoogle Scholar
  27. Davies PJ, Braga JC, Lund M, Webster JM (2004) Holocene deep water algal buildups on the Eastern Australian Shelf. Palaios 19:598–609CrossRefGoogle Scholar
  28. Dawson WC (1992) Phylloid algal microstructures enhanced by epifluorescence petrography. J Paleont 66:523–525Google Scholar
  29. Dawson WC, Carozzi AV (1986) Anatomy of a phylloid algal buildup, Raytown Limestone, Iola Formation, Pennsylvanian, Southeast Kansas, USA. Sediment Geol 47:221–261CrossRefGoogle Scholar
  30. Dawson W, Carozzi A (1993) Experimental deep burial, fabric-selective dissolution in Pennsylvanian phylloid algal limestones. Carbon Evaporite 8:71–81CrossRefGoogle Scholar
  31. Della Porta G, Kenter JAM, Bahamonde JR (2004) Depositional facies and stratal geometry of an Upper Carboniferous prograding and aggrading high-relief carbonate platform (Cantabrian Mountains, N Spain). Sedimentology 51:267–295. doi: 10.1046/j.1365-3091.2003.00621.x CrossRefGoogle Scholar
  32. Della Porta G, Villa E, Kenter J (2005) Facies distribution of Fusulinida in a Bashkirian-Moscovian (Pennsylvanian) carbonate platform top (Cantabrian Mountains, NW Spain). J Foram Res 35:344–367CrossRefGoogle Scholar
  33. Denizot M (1968) Les algues floridées encroûtantes (à l’exclusion des Corallinacées). Laboratoire de Cryptogamie, Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  34. Dickson JAD (1966) Carbonate identification and genesis revealed by staining. J Sediment Petrol 36:491–505Google Scholar
  35. Dickson JAD (1995) Paleozoic Mg calcite preserved: implications for the Carboniferous ocean. Geology 23:535–538CrossRefGoogle Scholar
  36. Elliott GF (1970) New and little-known Permian and Cretaceous Codiaceae (calcareous algae) from the Middle East. Palaeontology 13:327–333Google Scholar
  37. Endo R (1969) Fossil algae from the Khao Phlong Phrab District in Thailand. Geol Palaeont Southeast Asia 7:33–85Google Scholar
  38. Endo R, Kanuma M (1954) Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan; VII. Geology of the Mino mountainland and southern part of Hida plateau with description of the algal remains found in those districts. Rep Saitama Univ ser B 1:177–205Google Scholar
  39. Enpu G, Samankassou E, Changqing G, Yongli Z, Baoliang S (2007a) Paleoecology of Pennsylvanian phylloid algal buildups in south Guizhou, China. Facies 53:615–623CrossRefGoogle Scholar
  40. Enpu G, Yongli Z, Changqing G, Samankassou E, Baoliang SUN (2007b) Paleoecology of Late Carboniferous Phylloid Algae in Southern Guizhou, SW China. Acta Geol Sin-Engl 81:566–572CrossRefGoogle Scholar
  41. Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin Heidelberg New YorkGoogle Scholar
  42. Flügel E, Koch R (1995) Controls on the diagenesis of Upper Triassic carbonate ramp sediments: Steinplatte, Northern Alps (Austria). Geol Paläont Mitt Innsbruck 20:283–311Google Scholar
  43. Forsythe G (2003) A new synthesis of Permo-Carboniferous phylloid algal reef ecology. In: Ahr W, Harris PM, Morgan WA, Somerville ID (eds) Permo-Carboniferous carbonate platforms and reefs. SEPM Spec Publ 78:171–188Google Scholar
  44. Frost JG (1975) Winterset algal-bank complex, Pennsylvanian, eastern Kansas. AAPG Bull 59:265–291Google Scholar
  45. Goldhammer RK, Oswald EJ, Dunn PA (1991) Hierarchy of stratigraphic forcing: example from middle Pennsylvanian shelf carbonates of the Paradox basin. Kansas Geol Surv Bull 233:361–413Google Scholar
  46. Granier B (2012) The contribution of calcareous green algae to the production of limestones: a review. In: Basso D, Granier B (eds) Calcareous algae and the global change: from identification to quantification. Geodiversitas 34:35–60Google Scholar
  47. Güvenç T (1966) Description de quelques espèces d’algues calcaires (Gymnocodiacées et Dasycladacées) du Carbonifère et du Permien des Taurus Occidentaux. Rev Micropaléont 9:94–103Google Scholar
  48. Heckel PH, Cocke JM (1969) Phylloid algal-mound complexes in outcropping Upper Pennsylvanian rocks of Mid-Continent. AAPG Bull 53:1058–1074Google Scholar
  49. Hemming NG, Meyers WJ, Grams JC (1989) Cathodoluminescence in diagenetic calcites; the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements. J Sediment Res 59:404–411Google Scholar
  50. Henrich R, Wefer G (1986) Dissolution of biogenic carbonates: effects of skeletal structure. Mar Geol 71:341–362CrossRefGoogle Scholar
  51. James NP, Choquette PW (1984) Diagenesis 9: limestones: the meteoric diagenetic environment. Geosci Can 11:161–194Google Scholar
  52. James NP, Wray JL, Ginsburg RN (1988) Calcification of encrusting aragonitic algae (Peyssonneliaceae); implications for the origin of late Paleozoic reefs and cements. J Sediment Res 58:291–303Google Scholar
  53. Jenkyns HC, Jones CE, Gröcke DR, Hesselbo SP, Parkinson DN (2002) Chemostratigraphy of the Jurassic system: applications, limitations and implications for palaeoceanography. J Geol Soc Lond 159:351–378CrossRefGoogle Scholar
  54. Johnson JH (1946) Lime-secreting algae from the Pennsylvanian and Permian of Kansas. GSA Bull 57:1080–1120Google Scholar
  55. Johnson JH (1956) Archaeolithophyllum, a new genus of Paleozoic coralline algae. J Paleont 30:53–55Google Scholar
  56. Julivert M (1971) Decollement tectonics in the Hercynian Cordillera of NW Spain. Am J Sci 270:1–29CrossRefGoogle Scholar
  57. Kendall AC (1985) Radiaxial-fibrous calcite: a reappraisal. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM Spec Publ 36:59–77Google Scholar
  58. Kendall AC, Tucker ME (1973) Radiaxial fibrous calcite: a replacement after acicular carbonate. Sedimentology 20:365–389CrossRefGoogle Scholar
  59. Khvorova IV (1946) A new genus of algae from the middle Carboniferous deposits of the Moscow Basin. Dokl Akad Nauk SSSR 23:737–739Google Scholar
  60. Kirkland BL, Moore CHJ, Dickson JAD (1993) Well-preserved, aragonitic phylloid algae (Eugonophyllum, Udoteacea) from the Pennsylvanian Holder Formation, Sacramento Mountains, New Mexico. Palaios 8:111–120CrossRefGoogle Scholar
  61. Konhauser K (2007) Introduction to geomicrobiology. Blackwell Publishing, OxfordGoogle Scholar
  62. Konishi K (1954) Note on the Moscovian (?) deposits at Itoshiro-mura, Fukui, Japan. Geol Soc Japan J 60:7–17CrossRefGoogle Scholar
  63. Konishi K, Wray JL (1961) Eugonophyllum, a new Pennsylvanian and Permian genus. J Paleont 35:659–666Google Scholar
  64. Krainer K (1995) Anthracoporella mounds in the Late Carboniferous Auernig Group, Carnic Alps (Austria). Facies 32:195–214CrossRefGoogle Scholar
  65. Krainer K, Flügel E, Vachard D, Joachimski M (2007) A close look at Late Carboniferous algal mounds: Schulterkofel, Carnic Alps, Austria. Facies 49:325–350Google Scholar
  66. Littler MM, Littler DS, Blair SM, Norris JN (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep Sea Res 33:881–892CrossRefGoogle Scholar
  67. Lohmann KC, Meyers WJ (1977) Microdolomite inclusions in cloudy prismatic calcites: a proposed criterion for former high-magnesium calcites. J Sediment Petrol 47:1078–1088Google Scholar
  68. Krainer K, Lucas, SG, Vachard D (2007) Wolfcampian Laborcita mound complex, New Mexico, USA. In: Vennin E, Aretz M, Boulvain F, Munnecke A (eds) Facies from Palaeozoic reefs and bioaccumulations. Mém Mus Hist Nat 195:287–290Google Scholar
  69. Machel HG, Burton EA (1991) Factors governing the cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: qualitative and quantitative applications. SEPM Short Course 25:37–57Google Scholar
  70. Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: qualitative and quantitative applications. SEPM Short Course 25:9–25Google Scholar
  71. Mamet B (1991) Carboniferous calcareous algae. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 370–451CrossRefGoogle Scholar
  72. Mamet B, Villa E (2004) Calcareous marine algae from the Carboniferous (Moscovian-Gzhelian) of the Cantabrian Zone (NW Spain). Rev Esp Paleont 19:151–190Google Scholar
  73. Maslov VP (1956) Fossil calcareous algae of the USSR. Trudy Geol Inst SSSR 160:1–301Google Scholar
  74. Melim LA, Swart PK, Maliva RG (2001) Meteoric and marine-burial diagenesis in the subsurface of Great Bahama Bank Project. In: Ginsburg RN (ed) Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas Drilling. SEPM Spec Publ 70:137–161Google Scholar
  75. Milliman JD (1974) Marine carbonates. Springer, Berlin Heidelberg New YorkGoogle Scholar
  76. Moore CH (1989) Carbonate diagenesis and porosity. Developm Sediment 46, Elsevier, AmsterdamGoogle Scholar
  77. Morin J, Desrochers A, Beauchamp B (1994) Facies analysis of Lower Permian platform carbonates, Sverdrup basin, Canadian Arctic Archipelago. Facies 31:105–130CrossRefGoogle Scholar
  78. Moshier O, Kirkland B (1993) Identification and diagenesis of a phylloid alga: Archaeolithophyllum from the Pennsylvanian Providence Limestone, Western Kentucky. J Sediment Petrol 63:1032–1041Google Scholar
  79. Nelson CS, James NP (2000) Marine cements in mid-Tertiary cool-water shelf limestones of New Zealand and southern Australia. Sedimentology 47:609–629CrossRefGoogle Scholar
  80. Paniagua A, Rodríguez-Pevida LS, Loredo J, Fontboté L, Fenoll-Hach-Allí P (1996) Un yacimiento de Au en carbonatos del Orógeno Hercínico: el área de Salamón (N León). Geogaceta 20:1605–1608Google Scholar
  81. Pérez-Estaún A, Bastida F, Alonso JL, Marquinez J, Aller J, Alvarez-Marron J, Marcos A, Pulgar JA (1988) A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7:517–537CrossRefGoogle Scholar
  82. Pingitore NE (1994) Identification and diagenesis of a phylloid alga; Archaeolithophyllum from the Pennsylvanian Providence Limestone, western Kentucky; discussion. J Sediment Res 64A:923–924CrossRefGoogle Scholar
  83. Popp BN, Anderson TF, Sandberg PA (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geol Soc Am Bull 97:1262–1269CrossRefGoogle Scholar
  84. Porter SM (2010) Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology 8:256–277CrossRefGoogle Scholar
  85. Pratt BR (1995) The origin, biota and evolution of deep-water mudmounds. In: Monty CLV, Bosence DWJ, Bridges PH, Pratt BR (eds) Carbonate mud-mounds. Their origin and evolution. Int Assoc Sediment Spec Publ 23:49–123Google Scholar
  86. Pray LC, Wray JL (1963) Porous algal facies (Pennsylvanian), Honaker Trail, San Juan Canyon, Utah. In: Bass RO (ed) Shelf carbonates of the Paradox Basin. Four corners geol soc symposium, Fourth Field Conference Guidebook, Durango, pp 204–234Google Scholar
  87. Richter DK, Neuser RD, Schreuer J, Gies H, Immenhauser A (2011) Radiaxial-fibrous calcites: a new look at an old problem. Sediment Geol 239:23–36CrossRefGoogle Scholar
  88. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214CrossRefGoogle Scholar
  89. Ries JB (2006a) Aragonitic algae in calcite seas: effect of seawater Mg/Ca ratio on algal sediment production. J Sediment Res 76:515–523CrossRefGoogle Scholar
  90. Ries JB (2006b) Mg fractionation in crustose coralline algae: geochemical, biological, and sedimentological implications of secular variation in the Mg/Ca ratio of seawater. Geochim Cosmochim Ac 70:891–900CrossRefGoogle Scholar
  91. Roylance MH (1990) Depositional and diagenetic history of a Pennsylvanian algal-mound complex; Bug and Papoose Canyon fields, Paradox Basin, Utah and Colorado. AAPG Bull 74:1087–1099Google Scholar
  92. Rygel MC, Fielding CR, Frank TD, Birgenheier LP (2008) The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. J Sediment Res 78:500–511CrossRefGoogle Scholar
  93. Saller AH (1986) Radiaxial calcite in Lower Miocene strata, subsurface Enewetak Atoll. J Sediment Petrol 56:743–762Google Scholar
  94. Samankassou E, West RR (2002) Construction versus accumulation in phylloid algal mounds: an example of a small constructed mound in the Pennsylvanian of Kansas, USA. Palaeogeogr Palaeoclimatol Palaeoecol 185:379–389CrossRefGoogle Scholar
  95. Samankassou E, West RR (2003) Constructional and accumulational modes of fabrics in selected Pennsylvanian algal-dominated buildups in eastern Kansas, Midcontinent, USA. In: Wayne MA, Harris PM, Morgan WA, Somerville ID (eds) Permo-Carboniferous carbonate platforms and reefs. SEPM Spec Publ 78:219–237Google Scholar
  96. Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22CrossRefGoogle Scholar
  97. Sandberg PA (1985) Aragonite cements and their occurrence in ancient limestones. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM Spec Publ 36:33–57Google Scholar
  98. Schlagintweit F (2010) Gosavisiphon gen. nov. based on Halimeda paucimedullaris Schlagintweit and Ebli, 1998, a remarkable macroalga (Udoteaceae?) from the Late Cretaceous of the Northern Calcareous Alps (Austria and Germany) with affinities to Late Paleozoic and Late Triassic phylloids. Geol Croatica 63:27–53Google Scholar
  99. Senowbari-Daryan B, Rashidi K (2010) The codiacean genera Anchicodium Johnson, 1946 and Iranicodium gen. nov. from the Permian Jamal Formation of Shotori Mountains, northeast Iran. Riv Ital Paleont Stratigr 116:3–21Google Scholar
  100. Silva P, Johansen P (1986) A reappraisal of the order Corallinales (Rhodophyceae). Eur J Phycol 21:245–254CrossRefGoogle Scholar
  101. Somerville ID (2008) Biostratigraphic zonation and correlation of Mississippian rocks in Western Europe: some case studies in the late Visean/Serpukhovian. Geol J 43:209–240CrossRefGoogle Scholar
  102. Soreghan GS, Giles KA (1999) Amplitudes of Late Pennsylvanian glacioeustasy. Geology 27:255–258CrossRefGoogle Scholar
  103. Stanley SM (2006) Influence of seawater chemistry on biomineralization throughout Phanerozoic time: Paleontological and experimental evidence. Palaeogeogr Palaeoclimatol Palaeoecol 232:214–236CrossRefGoogle Scholar
  104. Stanley SM, Ries JB, Hardie LA (2002) Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proc Natl Acad Sci 99:15323–15326CrossRefGoogle Scholar
  105. Toomey DF (1976) Paleosynecology of a Permian plant dominated marine community. N Jb Geol Paläont Abh 152:1–18Google Scholar
  106. Toomey DF (1980) History of a Late Carboniferous phylloid algal bank complex in northeastern New Mexico. Lethaia 13:249–267CrossRefGoogle Scholar
  107. Toomey DF (1983) Early Permian coated grain from a lagoonal environment, Laborcita Formation, Sacramento Mountains, southcentral New Mexico, USA. In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 259–269CrossRefGoogle Scholar
  108. Toomey DF, Cys JM (1979) Community succession in small bioherms of algae and sponges in the Lower Permian of New Mexico. Lethaia 12:65–74CrossRefGoogle Scholar
  109. Torres AM, Baars DL (1992) Anchicodium Johnson: branched or phylloid? J Paleont 66:675–677Google Scholar
  110. Torres AM, West RR, Sawin RS (1992) Calcipatera cottonwoodensis, a new membranous Late Palaeozoic alga. J Paleont 66:678–681Google Scholar
  111. Tucker M, Wright P (1990) Carbonate sedimentology. Blackwell Science, OxfordCrossRefGoogle Scholar
  112. Vachard D, Aretz M (2004) Biostratigraphical precisions on the Early Serpukhovian (Late Mississippian), by means of a carbonate algal microflora (cyanobacteria, algae and pseudo-algae) from La Serre (Montagne Noire, France). Geobios 37:643–666CrossRefGoogle Scholar
  113. Vachard D, Cózar P (2010) An attempt of classification of the Palaeozoic incertae sedis Algospongia. Rev Esp Micropaleont 42:129–240Google Scholar
  114. Vachard D, Kabanov P (2007) Palaeoaplysinella gen. nov. and Likinia Ivanova and Ilkhovskii, 1973 emend., from the type Moscovian (Russia) and the algal affinities of the ancestral Palaeoaplysinaceae n. comb. Geobios 40:849–860CrossRefGoogle Scholar
  115. Vachard D, Hauser M, Martini R, Zaninetti L, Matter A, Peters T (2001) New algae and problematica of algal affinity from the Permian of the Aseelah Unit of the Batain Plain (East Oman). Geobios 34:375–404CrossRefGoogle Scholar
  116. Van Der Kooij B, Immenhauser A, Steuber T, Hagmaier M, Bahamonde JR, Samankassou E, Merino Tomé O (2007) Marine red staining of a Pennsylvanian carbonate slope: environmental and oceanographic significance. J Sediment Res 77:1026–1045CrossRefGoogle Scholar
  117. Van Der Kooij B, Immenhauser A, Steuber T, Bahamonde JR, Samankassou E, Merino Tomé O (2009) Spatial geochemistry of a Carboniferous platform-margin-to-basin transect: balancing environmental and diagenetic factors. Sediment Geol 219:136–150CrossRefGoogle Scholar
  118. Veizer J (1983) Trace elements and isotopes in sedimentary carbonates. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Rev Min Geochem 11:265–299Google Scholar
  119. Vera C, Martín-Llaneza J, Colmenero JR (1984) Estudio sedimentológico de algunos bancos carbonatados presentes en la serie Moscoviense de Coballes-Tanes (Región de Mantos, Zona Cantábrica). Trab Geol Univ Oviedo 14:45–52Google Scholar
  120. Wettstein RR (1901) Handbuch der systematischen Botanik, vol 1. Deuticke, Leipzig 201 pGoogle Scholar
  121. Wilson JL (1975) Carbonate facies in geologic history. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  122. Wilson PA, Dickson JAD (1996) Radiaxial calcite: alteration product of and petrographic proxy for magnesian calcite marine cement. Geology 24:945–948CrossRefGoogle Scholar
  123. Wray JL (1964) Archaeolithophyllum, an abundant calcareous algae in limestones of the Lasing Group (Pennsylvanian), southeastern Kansas. Kansas Geol Surv Bull 170:1–13Google Scholar
  124. Wray JL (1977a) Late Paleozoic calcareous red algae. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 167–176CrossRefGoogle Scholar
  125. Wray JL (1977b) Calcareous algae. Developments in paleontology and stratigraphy. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Facultad de Ciencias, Departamento de GeologíaUniversidad de SalamancaSalamancaSpain
  2. 2.Université Lille 1, UMR 8217 du CNRSVilleneuve d’Ascq CedexFrance

Personalised recommendations