, Volume 59, Issue 2, pp 391–424 | Cite as

Late Triassic, Early and Middle Jurassic Radiolaria from ferromanganese-chert ‘nodules’ (Angelokastron, Argolis, Greece): evidence for prolonged radiolarite sedimentation in the Maliac-Vardar Ocean

  • Marco Chiari
  • Peter O. Baumgartner
  • Daniel Bernoulli
  • Valerio Bortolotti
  • Marta Marcucci
  • Adonis Photiades
  • Gianfranco Principi
Original Article


In the Argolis, the Basal Sequence, constituting the eastern Pelagonian margin which bordered the Maliac-Vardar oceanic domain, includes shallow-water carbonates of Late Triassic-Early Jurassic, condensed pelagic limestones of Early-Middle Jurassic, radiolarian cherts of late Middle-Late Jurassic age and siliceous mudstones and sandstones rich in ophiolite fragments. Up-section, coarse breccias, including clasts of boninites derived from the ophiolite obducted onto the Pelagonian margin in Late Jurassic times crop out. Near Angelokastron a small quarry exposes pervasively sheared dark reddish-brown, radiolarian-bearing cherty shales with disrupted fragments of chert and chert nodules impregnated by ferro-manganese oxides. These shales occur in the footwall of a thrust bringing them into contact with the Pantokrator Limestone of the Basal Sequence. We collected more than 30 samples of the chert fragments and the shaly matrix. Thirteen nodules and one matrix sample yielded determinable radiolarians. Low to non-detectable concentrations of trace metals such as Co, Cr, Cu, Ni, Zn, and Pb indicate a hydrothermal origin of the ferro-manganese mineralization. The radiolarian taxa found indicate four age groups for the nodules that are embedded in the siliceous shale matrix that yielded a Middle Jurassic age (middle Bathonian). The first group includes a nodule of Late Triassic age (late Norian to Rhaetian); the second group nodules of Early Jurassic age (late early to late Pliensbachian and probably middle-late Toarcian); the third group nodules of early Middle Jurassic age (Aalenian–Bajocian); the last group finally includes nodules of late Middle Jurassic age (Bajocian–Bathonian). The presence of Upper Triassic to Middle Jurassic Mn-impregnated chert nodules in a Middle Jurassic matrix indicates a deep oceanic environment of deposition outside the Pelagonian realm (easternmost Adria Plate), which at that time was a shallow-water carbonate platform with a thin pelagic limestone cover. The chert nodules are with all certainty derived from the oceanic Maliac-Vardar domain and were, together with their host formation, tectonically emplaced onto the Pelagonian margin. We speculate that these nodules, more lithified than their matrix, were exhumed on the slope of an intra-oceanic accretionary wedge and were redeposited in the Middle Jurassic siliceous mudstones on the floor of the subducting Maliac-Vardar Ocean.


Radiolaria Ferromanganese mineralization Maliac-Vardar Ocean Triassic Jurassic Greece 



This research was supported by C.N.R. “Istituto di Geoscienze e Georisorse, U.O.S. di Firenze”, C.N.R. (Short Term Mobility, 2005), M.I.U.R.-PRIN 2006, M.I.U.R.-PRIN 2008. Radiolarian micrographs were taken with a Philips 515 SEM and a Zeiss EVO MA15 of the MEMA (University of Florence) by Maurizio Ulivi, and with a Philips XL20 of the Ivalsa (CNR) by Simona Lazzeri. We thank Špela Goričan and Paulian Dumitrica for useful suggestions. D. Bernoulli thanks M. Düggelin and D. Mathys (Basel University) for help with SE microscopy. We also thank A. Matsuoka and an anonymous reviewer for their constructive reviews of the manuscript.


  1. Al-Riyami K, Danelian T, Robertson AHF (2002) Radiolarian biochronology of Mesozoic deep-water successions in NW Syria and Cyprus: implications for south-Tethyan evolution. Terra Nova 14:271–280CrossRefGoogle Scholar
  2. Arakawa R (1998) Middle Jurassic Radiolaria assemblages from manganese dioxide nodules, Kuzuu area of Ashio terrane, central Japan. Bull Tochigi Pref Mus 15:51–76Google Scholar
  3. Argand E (1924) La tectonique de l’Asie. Compte-rendu du XIIIe congrès géologique international 1922. Vaillant-Carmanne, Liège, pp 171–372Google Scholar
  4. Asatryan G, Danelian T, Sosson M, Sahakyan L, Person A, Avagyan A, Galoyan G (2010) Radiolarian ages for the sedimentary cover of Sevan (Armenia, Lesser Caucasus). Ofioliti 35:91–101Google Scholar
  5. Aubouin J, Bonneau M, Davidson J, Leboulanger P, Matesco S, Zambetakis A (1976) Esquisse structurale de l’arc égéen externe: des Dinarides aux Taurides. Bull Soc Géol France Sér 7, 17:131–140Google Scholar
  6. Auer M, Gawlick HJ, Suzuki H, Schlagintweit F (2009) Spatial and temporal development of siliceous basin and shallow-water carbonate sedimentation in Oxfordian Northern Calcareous Alps. Facies 55:63–87CrossRefGoogle Scholar
  7. Bandini AN, Baumgartner PO, Caron M (2006) Turonian radiolarians from Karnezeika, Argolis Peninsula, Peloponnesus (Greece). Eclogae Geol Helv 99:1–20CrossRefGoogle Scholar
  8. Bandini AN, Baumgartner PO, Flores K, Dumitrica P, Hochard C, Stampfli GM, Jackett SJ (2011) Aalenian to Cenomanian Radiolaria of the Bermeja complex (Puerto Rico) and Pacific origin of radiolarites on the Caribbean plate. Swiss J Geosci 104:367–408CrossRefGoogle Scholar
  9. Baumgartner PO (1980) Late Jurassic Hagiastridae and Patulibracchiidae (Radiolaria) from the Argolis Peninsula (Peloponnesus, Greece). Micropaleontology 26:274–322CrossRefGoogle Scholar
  10. Baumgartner PO (1984) A Middle Jurassic-Early Cretaceous low latitude radiolarian zonation based on unitary association and age of Tethyan radiolarites. Eclogae Geol Helv 77:729–841Google Scholar
  11. Baumgartner PO (1985) Jurassic sedimentary evolution and nappe emplacement in the Argolis Peninsula (Peloponnesus; Greece). Mém Soc Helv Sci Nat 99:1–111Google Scholar
  12. Baumgartner PO (1987) Age and genesis of Tethyan Jurassic radiolarites. Eclogae Geol Helv 80:831–879Google Scholar
  13. Baumgartner PO (1995) Towards a Mesozoic radiolarian data-base - Updates of the work 1984-1990. In: Baumgartner PO, O’Dogherty L, Goričan Š, Urquhart E, Pillevuit A, De Wever P (eds) Middle Cretaceous to Lower Cretaceous Radiolaria of Tethys: occurrences, systematics, biochronology. Mém Géol (Lausanne) 23:689–700Google Scholar
  14. Baumgartner PO, O’Dogherty L, Goričan Š, Dumitrica-Jud R, Dumitrica P, Pillevuit A, Urquhart E, Matsuoka A, Danelian T, Bartolini A, Carter ES, De Wever P, Kito N, Marcucci M, Steiger TA (1995a) Radiolarian catalogue and systematics of Middle Jurassic to Early Cretaceous Tethyan genera and species. In: Baumgartner PO, O’Dogherty L, Goričan Š, Urquhart E, Pillevuit A, De Wever P (eds) Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: occurrences, systematics, biochronology. Mém Géol (Lausanne) 23:37–685Google Scholar
  15. Baumgartner PO, Bartolini A, Carter ES, Conti M, Cortese G, Danelian T, De Wever P, Dumitrica P, Dumitrica-Jud R, Goričan Š, Guex J, Hull DM, Kito N, Marcucci M, Matsuoka A, Murchey B, O’Dogherty L, Savary J, Vishnevskaya V, Widz D, Yao A (1995b) Middle Jurassic to Early Cretaceous Radiolarian biochronology of Tethys based on Unitary Associations. In: Baumgartner PO, O’Dogherty L, Goričan Š, Urquhart E, Pillevuit A, De Wever P (eds) Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: occurrences, systematics, biochronology. Mém Géol (Lausanne) 23:1013–1048Google Scholar
  16. Baumgartner PO, Bernoulli D, Stampfli GM, Chiari M (2003) Radiolarian ages, formation, and emplacement history of ophiolites in Eastern Greece. INTERRAD X, Lausanne (Switzerland), Abstract:30–32Google Scholar
  17. Baxter AT, Aitchison JC, Zyabrev SV, Ali JR (2011) Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Res 20:638–644CrossRefGoogle Scholar
  18. Beccaro P (2006) Radiolarian biostratigraphy of Middle-Upper Jurassic pelagic siliceous successions of western Sicily and the Southern Alps (Italy). Mém Géol (Lausanne) 45:1–114Google Scholar
  19. Beccaro P, Baumgartner PO, Martire L (2002) Radiolarian biostratigraphy of the Fonzaso formation, Middle-Upper Jurassic, Southern Alps, Italy. Micropaleontology 48(suppl 1):43–60Google Scholar
  20. Bernoulli D (2001) Mesozoic-Tertiary carbonate platforms, slopes and basins of the external Apennines and Sicily. In: Vai GB, Martini P (eds) Anatomy of an orogen: the Apennines and adjacent Mediterranean basins. Kluwer, Dordrecht, pp 307–325Google Scholar
  21. Bernoulli D, Laubscher H (1972) The palinspastic problem of the Hellenides. Eclogae Geol Helv 65:107–118Google Scholar
  22. Bertinelli A, Ciarapica G, De Zanche V, Marcucci M, Mietto P, Passeri L, Rigo M, Roghi G (2005) Stratigraphic evolution of the Triassic-Jurassic Sasso di Castalda succession (Lagonegro Basin, Southern Apennines, Italy). Boll Soc Geol It 124:161–175Google Scholar
  23. Bonatti E (1975) Metallogenesis at oceanic spreading centers. Ann Rev Earth Planet Sci 3:401–431CrossRefGoogle Scholar
  24. Bonatti E (1981) Metal deposits in the oceanic lithosphere. In: Emiliani C (ed) The oceanic lithosphere. The sea, vol 7. Wiley, New York, pp 639–686Google Scholar
  25. Bonatti E, Nayudu YR (1965) Origin of manganese nodules on the ocean floor. Am J Sci 263:17–39CrossRefGoogle Scholar
  26. Bonatti E, Kraemer T, Rydell HS (1972) Classification and genesis of submarine iron-manganese deposits. In: Horn DR (ed) Ferromanganese deposits on the ocean floor. Office for the International Decade of Ocean Exploration, National Science Foundation, Washington, DC, pp 149–166Google Scholar
  27. Bortolotti V, Carras N, Chiari M, Fazzuoli M, Marcucci M, Photiades A, Principi G (2002) New geological observations and biostratigraphic data on the Argolis Peninsula: palaeogeographic and geodynamic implications. Ofioliti 27:43–46Google Scholar
  28. Bortolotti V, Carras N, Chiari M, Fazzuoli M, Marcucci M, Photiades A, Principi G (2003) The Argolis peninsula in the palaeogeographic and geodynamic frame of the Hellenides. Ofioliti 28:79–94Google Scholar
  29. Bortolotti V, Chiari M, Marcucci M, Photiades A, Principi G, Saccani E (2008) New geochemical and age data on the ophiolites from the Othrys area (Greece): implication for the Triassic evolution of the Vardar ocean. Ofioliti 33:135–151Google Scholar
  30. Bortolotti V, Carras N, Chiari M, Fazzuoli M, Marcucci M, Nirta G, Principi G, Saccani E (2009) The ophiolite-bearing mélange in the early tertiary Pindos Flysch of Etolia (central Greece). Ofioliti 34:83–94Google Scholar
  31. Boström K (1973) The origin and fate of ferromanganoan active ridge sediments. Stockholm Contr Geol 27:149–243Google Scholar
  32. Capedri S, Grandi R, Photiades A, Toscani L (1996) ‘Boninitic’ clasts from the Mesozoic olistostromes and turbidites of Angelokastron (Argolis, Greece). Geol J 31:301–322CrossRefGoogle Scholar
  33. Carter ES (1993) Biochronology and paleontology of uppermost Triassic (Rhaetian) radiolarians, Queen Charlotte Island, British Columbia, Canada. Mém Géol (Lausanne) 11:1–175Google Scholar
  34. Carter ES, Hori RS (2005) Global correlation of the radiolarian faunal change across the Triassic-Jurassic boundary. Can J Earth Sci 42:777–790CrossRefGoogle Scholar
  35. Carter ES, Whalen PA, Guex J (1998) Biochronology and paleontology of Lower Jurassic (Hettangian and Sinemurian) radiolarians, Queen Charlotte Islands, British Columbia. Geol Surv Canada Bull 496:1–162Google Scholar
  36. Carter ES, Goričan Š, Guex J, O’Dogherty L, De Wever P, Dumitrica P, Hori RS, Matsuoka A, Whalen PA (2010) Global radiolarian zonation for the Pliensbachian, Toarcian and Aalenian: the link between zonations for the Lower Jurassic (Hettangian-Sinemurian) and the Middle and Upper Jurassic. Palaeogeogr Palaeoclimatol Palaeoecol 297:401–419CrossRefGoogle Scholar
  37. Channell JET, Horvath F (1976) The African/Adriatic promontory as palaeogeographic premise for Alpine orogeny and plate movements in the Carpatho-Balkan region. Tectonophysics 35:71–101CrossRefGoogle Scholar
  38. Chiari M (2001) Biostratigrafia a radiolari del Giurassico Medio-Cretaceo Inferiore nella Tetide Occidentale. PhD thesis, University of Parma, ParmaGoogle Scholar
  39. Chiari M, Marcucci M, Prela M (1994) Mirdita ophiolites project: 2 radiolarian assemblages in the cherts at Fushe Arrez and Shebaj (Mirdita Area, Albania). Ofioliti 19:313–318Google Scholar
  40. Chiari M, Cortese G, Marcucci M, Nozzoli N (1997) Radiolarian biostratigraphy in the sedimentary cover of the ophiolites of south-western Tuscany, central Italy. Eclogae Geol Helv 90:55–77Google Scholar
  41. Chiari M, Marcucci M, Prela M (2002) New species of Jurassic radiolarians in the sedimentary cover of ophiolites in the Mirdita area, Albania. Micropaleontology 48(suppl 1):61–87Google Scholar
  42. Chiari M, Bortolotti V, Marcucci M, Photiades A, Principi G (2003) The Middle Jurassic siliceous sedimentary cover at the top of the Vourinos ophiolite (Greece). Ofioliti 28:95–103Google Scholar
  43. Chiari M, Marcucci M, Prela M (2004) Radiolarian assemblages from the Jurassic cherts of Albania: new data. Ofioliti 29:95–105Google Scholar
  44. Chiari M, Cobianchi M, Picotti V (2007) Integrated stratigraphy (radiolarians and calcareous nannofossils) of the Middle to Upper Jurassic Alpine radiolarites (Lombardian Basin, Italy): constraints to their genetic interpretation. Palaeogeogr Palaeoclimatol Palaeoecol 249:233–270CrossRefGoogle Scholar
  45. Chiari M, Di Stefano P, Parisi G (2008) New stratigraphic data on the Middle-Late Jurassic biosiliceous sediments from the Sicanian basin, western Sicily (Italy). Swiss J Geosci 101:415–429CrossRefGoogle Scholar
  46. Chiari M, Bortolotti V, Marcucci M, Photiades A, Principi G, Saccani E (2012) Radiolarian biostratigraphy and geochemistry of the Koziakas Massif ophiolites (Greece). Bull Soc Géol Fr 183Google Scholar
  47. Clift PD, Dixon JE (1998) Jurassic ridge collapse, subduction initiation and ophiolite obduction in the southern Greek Tethys. Eclogae Geol Helv 91:128–138Google Scholar
  48. Clift PD, Robertson AHF (1989) Evidence of a late Mesozoic ocean basin and subduction/accretion in the southern Greek Neotethys. Geology 17:559–563CrossRefGoogle Scholar
  49. Clift PD, Robertson AHF (1990) A Cretaceous neo-Tethyan carbonate margin in Argolis, southern Greece. Geol Mag 127:299–308CrossRefGoogle Scholar
  50. Corliss JB, Dymond J (1975) Nazca Plate metalliferous sediments: element distribution patterns in surface samples. EOS (Am Geophys Union Trans) 56:445Google Scholar
  51. Cortese G (1993) Radiolarian biostratigraphy of the Tuscan Cherts (Tuscan Succession) from Val di Lima, Tuscany, Northern Apennines. Paleopelagos 3:169–189Google Scholar
  52. Cowen JP, De Carlo EH, McGee DL (1993) Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Mar Geol 115:289–306CrossRefGoogle Scholar
  53. Danelian T, Robertson AHF (1997) Radiolarian evidence for the stratigraphy and palaeo-oceanography of the deep-water passive margin of the Indian plate (Karamba Formation, Indus Suture Zone, Ladakh Himalaya). Mar Micropal 30:171–195CrossRefGoogle Scholar
  54. Danelian T, Robertson AHF (2001) Neotethyan evolution of eastern Greece (Pagondas Mélange, Evia Island) inferred from radiolarian biostratigraphy and the geochemistry of associated extrusive rocks. Geol Mag 138:345–363CrossRefGoogle Scholar
  55. Danelian T, Robertson AHF, Dimitriadis S (1996) Age and significance of radiolarian sediments within basic extrusives of the marginal basin Guevgueli Ophiolite (northern Greece). Geol Mag 133:127–136CrossRefGoogle Scholar
  56. Danelian T, Lekkas S, Allexopoulos A (2000) Découverte de radiolarites triasiques dans un complexe ophiolitique à l’extreme-sud du Péloponnèse (Angelona, Lakonie, Grèce). C R Acad Sci Paris 330:639–644Google Scholar
  57. Danelian T, De Wever P, Durand-Delga M (2008) Revised radiolarian ages for the sedimentary cover of the Balagne ophiolite (Corsica, France). Implications for the palaeoenvironmental evolution of the Balano-Ligurian margin. Bull Soc Géol Fr 179:289–296Google Scholar
  58. De Carlo EH (1991) Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean. Mar Geol 98:449–467CrossRefGoogle Scholar
  59. De Wever P (1984) Révision des radiolaires mésozoïque de type Saturnalidae, proposition d’une nouvelle classification. Rev Micropaléont 27:10–19Google Scholar
  60. De Wever P (1995) Radiolarians overlying ophiolites of the Almopias Domain (Macedonia, Greece). In: Baumgartner PO, O’Dogherty L, Goričan Š, Urquhart E, Pillevuit A, De Wever P (eds) Middle Cretaceous to Lower Cretaceous radiolaria of Tethys: occurrences, systematics, biochronology. Mém Géol Lausanne 2:877–879Google Scholar
  61. Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjaquet C, Sbortchikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorotkin O, Westphal M, Bashenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics 123:241–315CrossRefGoogle Scholar
  62. Djerić N, Gerzina N, Schmid SM (2007) Age of the Jurassic Radiolarian chert formation from the Zlatar Mountain (SW Serbia). Ofioliti 32:101–108Google Scholar
  63. Dostal J, Toscani L, Photiades A, Capedri S (1991) Geochemistry and petrogenesis of Tethyan ophiolites from northern Argolis (Peloponnesus, Greece). Europ J Miner 3:105–121Google Scholar
  64. Dumitrica P (1970) Cryptocephalic and cryptothoracic Nassellaria in some Mesozoic deposits of Romania. Géol Géophys Géograph (sér Géol) 14:45–124Google Scholar
  65. Dumitrica P, Dumitrica-Jud R (2005) Hexasaturnalis nakasekoi nov. sp., a Jurassic saturnalid radiolarian species frequently confounded with Hexasaturnalis suboblongus (Yao). Rev de Micropaléont 48:159–168CrossRefGoogle Scholar
  66. Goldberg ED (1954) Chemical scavengers of the sea. J Geol 62:249–265CrossRefGoogle Scholar
  67. Goldberg ED, Arrhenius G (1959) Chemistry of Pacific pelagic sediments. Geochim Cosmochim Acta 13:153–212CrossRefGoogle Scholar
  68. Goričan Š, Carter ES, Dumitrica P, Whalen PA, Hori RS, De Wever P, O’Dogherty L, Matsuoka A, Guex J (2006) Catalogue and systematics of Pliensbachian. Toarcian and Aalenian radiolarian genera and species. Založba ZRC/ZRC Publ, ZRC SAZU Ljubljana, pp 1–446Google Scholar
  69. Goričan Š, Pavšič J, Rožič B (2012) Bajocian to Tithonian age of radiolarian cherts in the Tolmin Basin (NW Slovenia). Bull Soc Géol Fr 183Google Scholar
  70. Grill J, Kozur H (1986) The first evidence of the Unuma echinatus radiolarian zone in the Rudabanya Mts. (northern Hungary). Geol Paläont Mitt Innsbruck 13(11):239–275Google Scholar
  71. Gümbel W (1878) Über die im stillen Ozean auf dem Meeresgrund vorkommenden Manganknollen. Sitzber Bayer Akad Wiss Math-Phys Classe 2:189–209Google Scholar
  72. Halamić J, Goričan Š, Slovenec D, Kolar-Jurkovšek T (1999) A Middle Jurassic radiolarite clastic succession from the Medvednica Mt. (NW Croatia). Geol Croatica 52:29–57Google Scholar
  73. Halbach P (1986) Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geol Rundsch 75:235–247CrossRefGoogle Scholar
  74. Hamilton EL (1956) Sunken islands of the mid-pacific mountains. Geol Soc Am Mem 64:1–97Google Scholar
  75. Hatakeda K, Suzuki N, Matsuoka A (2007) Quantitative morphological analyses and evolutionary history of the Middle Jurassic polycystine radiolarian genus Striatojaponocapsa Kozur. Marine Micropaleont 63:39–56CrossRefGoogle Scholar
  76. Hori N, Wakita K (2006) Early Middle Jurassic (late Aalenian) radiolarian assemblage in a manganese nodule from the Northern Chichibu Belt in the Ino area, Kochi Prefecture, Southwest Japan. J Asian Earth Sci 27:45–60CrossRefGoogle Scholar
  77. Hori RS, Yamakita S, Dumitrica P (2009) Late Triassic phaeodarian Radiolaria from the Northern Chichibu Belt, Shikoku, Japan. Paleont Res 13:1–11CrossRefGoogle Scholar
  78. Hull DM (1997) Upper Jurassic Tethyan and southern Boreal radiolarians from western North America. Micropaleontology 43(Suppl 2):1–202Google Scholar
  79. Ichikawa K, Yao A (1976) Two new genera of Mesozoic cyrtoid radiolarians from Japan. In: Takayanagi Y, Saito T (eds) Progress in micropaleontology. Special Publication—Micropaleontology Press, The American Museum of Natural History, New York, pp 110–117Google Scholar
  80. Jenkyns HC (1977) Fossil nodules. In: Glasby GP (ed) Marine manganese deposits, vol 15. Elsevier Oceanography Series, Amsterdam, pp 87–108CrossRefGoogle Scholar
  81. Jolivet L, Rimmelé G, Oberhänsli R, Goffé B, Candan O (2004) Correlation of syn-orogenic and metamorphic events in the Cyclades, the Lycian nappes and the Menderes massif. Geodynamic implications. Bull Soc Géol France 175:217–238Google Scholar
  82. Jones G, Robertson AHF (1991) Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. J Geol Soc Lond 148:267–288CrossRefGoogle Scholar
  83. Jones G, De Wever P, Robertson AHF (1992) Significance of radiolarian age data to the Mesozoic tectonic and sedimentary evolution of the northern Pindos Mountains, Greece. Geol Mag 129:385–400CrossRefGoogle Scholar
  84. Kashiwagi K, Kurimoto C (2003) Reexamination of radiolarian biochronology of the Shimizu formation (Northern Chicibu Belt) in the Shimizu-Misato area, western Kii Peninsula, southwest Japan. Bull Geol Surv Jpn 54:279–293Google Scholar
  85. Kito N, De Wever P (1992) Nouvelles espèces d’Hagiastride (Radiolaires) du Jurassique Moyen de Sicilie (Italie). Rev Micropal 35:127–141Google Scholar
  86. Kojima S, Tsukada K, Otoh S, Yamakita S, Ehiro M, Dia C, Kirillova GL, Dymovich VA, Eichwald LP (2008) Geological relationship between Anyui metamorphic complex and Samarka terrane, Far East Russia. Island Arc 17:502–516CrossRefGoogle Scholar
  87. Kövér S, Hass J, Ozsvárt P, Görög A, Götz AE, Józsa S (2009) Lithofacies and age data of Jurassic foreslope and basin sediments of Rudabánya Hills (NE Hungary) and their tectonic interpretation. Geol Carpathica 60:351–379CrossRefGoogle Scholar
  88. Kozur H (1984) New radiolarian taxa from the Triassic and Jurassic. Geol Paläont Mitt Innsbruck 13:49–88Google Scholar
  89. Kozur H, Mostler H (1972) Beiträge zur Erforschung der mesozoischen Radiolarien. Teil I: revision der Oberfamilie Coccodiscacea Haeckel 1862, emend. und Beschreibung ihrer triassischen Vertreter. Geol Paläont Mitt Innsbruck 2:1–60Google Scholar
  90. Kozur H, Mostler H (1981) Beiträge zur Erforschung der mesozoischen Radiolarien. Teil IV: Thalassosphaeracea Haeckel, 1862, Hexastylacea Haeckel 1882, emend. Petrushevskaja, 1979, Sponguracea Haeckel, emend. und weitere triassische Lithocycliacea, Trematodisca Actinommacea und Nassellaria. Geol Paläont Mitt Innsbruck Sondbd 1:1–208Google Scholar
  91. Kozur H, Mostler H (1983) The polyphyletic origin and the classification of the Mesozoic saturnalids (Radiolaria). Geol Paläont Mitt Innsbruck 9:1–132Google Scholar
  92. Ku TL, Broecker WS (1969) Radiochemical studies on manganese nodules of deep-sea origin. Deep Sea Res 16:625–637Google Scholar
  93. Lynn DC, Bonatti E (1965) Mobility of manganese in diagenesis of deep-sea sediments. Mar Geol 3:457–474CrossRefGoogle Scholar
  94. Marcucci M, Prela M (1996) The Lumi i Zi (Puke) section of the Kalur Cherts: radiolarian assemblages and comparison with other sections in Northern Albania. Ofioliti 21:71–76Google Scholar
  95. Marcucci M, Prela M, Cortese G, Kodra A (1998) Radiolarian biostratigraphy of the Jurassic cherts in the Karma and Fushe Lura areas, Northern Albania. Ofioliti 23:101–105Google Scholar
  96. Martin JH, Knauer GA (1983) Vertex: manganese transport with CaCO3. Deep Sea Res 30(4):411–425CrossRefGoogle Scholar
  97. Martín-Barajas A, Lallier-Verges E (1993) Ash layers and pumice in the central Indian Basin: relationship to the formation of manganese nodules. Mar Geol 115:307–329CrossRefGoogle Scholar
  98. Martini R, Zaninetti L, Villeneuve M, Corneée JJ, Krystyn L, Cirilli S, De Wever P, Dumitrica P, Harsolumakso A (2000) Triassic pelagic deposits of Timor: palaeogeographic and sea-level implications. Palaeogeogr Palaeoclimatol Palaeoecol 160:123–151CrossRefGoogle Scholar
  99. Matsuoka A (1983) Middle and Late Jurassic radiolarian biostratigraphy in the Sakawa and adjacent areas, Shikoku, southwest Japan. J Geosci Osaka City Univ 26:1–48Google Scholar
  100. Matsuoka A (1995) Middle Jurassic to Early Cretaceous radiolarian occurrences in Japan and the Western Pacific (ODP Sites 800-801). In: Baumgartner PO, O’Dogherty L, Goričan Š, Urquhart E, Pillevuit A, De Wever P (eds) Middle Cretaceous to Lower Cretaceous radiolaria of Tethys: occurrences, systematics, biochronology. Mém Géol (Lausanne) 23:937–966Google Scholar
  101. Missoni S, Gawlick HJ (2011a) Evidence for Jurassic subduction from the Northern Calcareous Alps (Berchtesgaden; Austroalpine, Germany). Int J Earth Sci (Geol Rundsch) 100:1605–1631CrossRefGoogle Scholar
  102. Missoni S, Gawlick HJ (2011b) Jurassic mountain building and Mesozoic-Cenozoic geodynamic evolution of the Northern Calcareous Alps as proven in the Berchtesgaden Alps (Germany). Facies 57:137–186CrossRefGoogle Scholar
  103. Moore TC Jr (2008) Biogenic silica and chert in the Pacific Ocean. Geology 36:975–978CrossRefGoogle Scholar
  104. Murray J, Irvine R (1895) On the manganese oxide and manganese nodules in marine deposits. Trans Roy Soc Edinb 37:721–742CrossRefGoogle Scholar
  105. Murray J, Renard AF (1891) Report on deep-sea deposits based on specimens collected during the voyage of H.M.S. ‘Challenger’ in the years 1873–1876. In: Challenger Reports, H.M.S.O., EdinburghGoogle Scholar
  106. Nagai H, Mizutani S (1992) Jurassic (Bathonian) radiolarians from the snowshoe formation, east-central Oregon, North America. NOM 8:47–61Google Scholar
  107. Nirta G, Bortolotti V, Chiari M, Menna M, Saccani E, Principi G, Vannucchi P (2010) Ophiolites from the Grammos-Arrenes area, northern Greece: geological, paleontological and geochemical data. Ofioliti 35:103–115Google Scholar
  108. O’Dogherty L, Bill M, Goričan Š, Dumitrica P, Masson H (2006) Bathonian radiolarians from an ophiolitic mélange of the Alpine Tethys (Gets Nappe, Swiss-French Alps). Micropaleontology 51:425–485CrossRefGoogle Scholar
  109. O’Dogherty L, Carter ES, Dumitrica P, Goričan Š, De Wever P, Hungerbühler A, Bandini AN, Takemura A (2009a) Catalogue of Mesozoic radiolarian genera. Part 1: Triassic. Geodiversitas 31:213–270CrossRefGoogle Scholar
  110. O’Dogherty L, Carter ES, Dumitrica P, Goričan Š, De Wever P, Bandini AN, Baumgartner PO, Matsuoka A (2009b) Catalogue of Mesozoic radiolarian genera. Part 2: Jurassic-Cretaceous. Geodiversitas 31:271–356CrossRefGoogle Scholar
  111. Perseil EA, Photiades A (1993) Les minéralisations manganésifères à macfallite and orientite de l’Argolide septentrionale (Grèce). Minéralogie et Métallogénie. Mus Natl Hist Nat, Paris 4e Sér 15, sect C:3–24Google Scholar
  112. Perseil EA, Photiades A, Giovanoli R (1998) Manganiferous concretions bearing luminescent fluorapatite in Jurassic red cherts of pillow-lavas ophiolite unit (Angelokastro, Argolis). Bull Geol Soc Greece 32(3):13–19Google Scholar
  113. Pessagno EA (1977) Upper Jurassic Radiolaria and radiolarian biostratigraphy of the California Coast Ranges. Micropaleontology 23:56–113CrossRefGoogle Scholar
  114. Pessagno EA, Blome C (1980) Upper Triassic and Jurassic Pantanelliinae from California, Oregon and British Columbia. Micropaleontology 26:289–318CrossRefGoogle Scholar
  115. Pessagno EA, Whalen PA (1982) Lower and Middle Jurassic Radiolaria (multicyrtid Nassellariina) from California, east-central Oregon and the Queen Charlotte Islands, B.C. Micropaleontology 28:111–169CrossRefGoogle Scholar
  116. Photiades A (1986) Contribution à l’étude géologique et métallogénique des unités ophiolitiques de l’Argolide septentrionale (Grèce). Thèse 3e cycle, Univ BesançonGoogle Scholar
  117. Photiades A, Keay S (2000) Mid-Late Jurassic granodiorite basement in southern Argolis Peninsula (Greece): tectonostratigraphic implications. In: Panayides I, Xenophontos C, Malpas J (eds) Proceedings of the third international conference on the geology of the Eastern Mediterranean. Geol Surv Dept Cyprus, pp 233–239Google Scholar
  118. Photiades A, Perseil EA, Meisser N (1995) A Ni-rich todorokite from the Middle volcanic ophiolitic unit of northern Argolis (Greece). Geol Soc Greece Spec Publ 4:467–471Google Scholar
  119. Prela M, Chiari M, Marcucci M (2000) Jurassic radiolarian biostratigraphy of the sedimentary cover of ophiolites in the Mirdita Area, Albania: new data. Ofioliti 25:55–62Google Scholar
  120. Reggiani L, Bertinelli A, Ciarapica G, Marcucci M, Passeri L, Ricci C, Rigo M (2005) Triassic-Jurassic stratigraphy of the Madonna del Sirino succession (Lagonegro Basin, Southern Apennines, Italy). Boll Soc Geol It 124:281–291Google Scholar
  121. Ricou LE, Burg JP, Godfriaux Ivanov Z (1998) Rhodope and Vardar: the metamorphic and olistostromic paired belts related to the Cretaceous subduction under Europe. Geodin Acta 11:285–309CrossRefGoogle Scholar
  122. Robin C, Goričan Š, Guillocheau F, Razin P, Dromart G, Mosaffa H (2010) Mesozoic deep-water carbonate deposits from the southern Tethyan passive margin in Iran (Pichakun nappes, Neyriz area): biostratigraphy, facies sedimentology and sequence stratigraphy. In: Leturny P, Robin C (eds) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic-Cenozoic. Geol Soc Lond, Spec Publ 330:179–210Google Scholar
  123. Saccani E, Padoa E, Photiades A (2004) Triassic mid-ocean ridge basalts from the Argolis Peninsula (Greece): new constraints for the early oceanisation phases of the Neo-Tethyan Pindos basin. In: Dilek Y, Robinson PT (eds) Ophiolites in earth history. Geol Soc Lond, Spec Publ 218:109–127Google Scholar
  124. Scherreiks R, Bosence D, Boudagher M, Melendez G, Baumgartner PO (2010) Evolution of the Pelagonian carbonate platform complex and the adjacent oceanic realm in response to plate tectonic forcing (Late Triassic and Jurassic), Evvoia, Greece. Int J Earth Sci 99:1317–1334CrossRefGoogle Scholar
  125. Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carphatian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183CrossRefGoogle Scholar
  126. Smith AG, Rassios A (2003) The evolution of ideas for the origin and emplacement of the western Hellenic ophiolites. In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geological thought. Geol Soc Am Spec Publ 373:337–350Google Scholar
  127. Smith AG, Woodcock NH, Naylor MA (1979) The structural evolution of a Mesozoic continental margin, Othris Mountains, Greece. J Geol Soc Lond 136:589–603CrossRefGoogle Scholar
  128. Šmuc A, Goričan Š (2005) Jurassic sedimentary evolution of a carbonate platform into a deep-water basin, Mt. Mangart (Slovenian-Italian border). Riv It Pal Strat 111:45–70Google Scholar
  129. Sorem RK (1967) Manganese nodules: nature and significance of internal structure. Econ Geol 62:141–147CrossRefGoogle Scholar
  130. Sorem RK, Fewkes RH (1977) Internal characteristics. In: Glasby GP (ed) Marine manganese deposits, vol 15. Elsevier Oceanography Series, Amsterdam, pp 147–183CrossRefGoogle Scholar
  131. Suzuki H, Gawlick HJ (2003) Biostratigraphie und Taxonomie der Radiolarien aus den Kieselsedimenten der Blaa Alm und nördlich des Loser (Nördliche Kalkalpen, Callovium-Oxfordium). Mitt Ges Geol Bergbaustud Österr 46:137–228Google Scholar
  132. Suzuki H, Gawlick HJ (2009) Jurassic radiolarians from cherty limestones below the Hallstatt salt mine (Northern Calcareous Alps, Austria). N Jb Geol Paläont Abh 251:155–197CrossRefGoogle Scholar
  133. Suzuki N, Ogane K (2004) Paleoceanographic affinities of radiolarian faunas in late Aalenian time (Middle Jurassic) recorded in the Jurassic accretionary complex of Japan. J Asian Earth Sci 23:343–357CrossRefGoogle Scholar
  134. Takemura A (1986) Classification of Jurassic nassellarians (Radiolaria). Palaeontographica A 195:29–74Google Scholar
  135. Tekin UK (1999) Biostratigraphy and systematics of late Middle to Late Triassic radiolarians from the Taurus Mountains and Ankara Region, Turkey. Geol Paläont Mitt Innsbruck, Sondbd 5:1–296Google Scholar
  136. Tekin UK (2002a) Late Triassic (late Norian-Rhaetian) radiolarians from the Antalya Nappes, central Taurides, southern Turkey. Riv It Pal Strat 108:415–440Google Scholar
  137. Tekin UK (2002b) Lower Jurassic (Hettangian-Sinemurian) radiolarians from the Antalya nappes, central Taurids, southern Turkey. Micropaleontology 48:177–205CrossRefGoogle Scholar
  138. Tekin UK, Göncüoglu MC (2009) Late Middle Jurassic (Late Bathonian-Early Callovian) radiolarian cherts from the Neotethyan Bornova Flysch Zone, Spil Mountains, western Turkey. Strat Geol Correl 17:298–308CrossRefGoogle Scholar
  139. Usui A, Ito T (1994) Fossil manganese deposits buried within DSDP/ODP cores. Legs 1–126. Mar Geol 119:111–136CrossRefGoogle Scholar
  140. Usui A, Someya M (1997) Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. In: Nicholson K, Hein JR, Bühn B, Dasgupta S (eds) Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geol Soc Lond Spec Publ 119:177-198Google Scholar
  141. Usui A, Terashima S (1997) Deposition of hydrogenetic and hydrothermal manganese minerals in the Ogasawara (Bonin) arc area, northwest Pacific. Mar Geores Geotech 15:127–154CrossRefGoogle Scholar
  142. Usui A, Mellin TA, Nohara M, Yuasa M (1989) Structural stability of marine 10 Å manganates from the Osagawara (Bonin) Arc: implications for low-temperature hydrothermal activity. Mar Geol 86:41–56CrossRefGoogle Scholar
  143. Usui A, Graham IJ, Ditschburn RG, Zondervan A, Shibasaki H, Hishida H (2007) Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean. Island Arc 16:420–430CrossRefGoogle Scholar
  144. Uzuncimen S, Tekin UK, Bedi Y, Perincek D, Varol E, Soycan H (2011) Discovery of the Late Triassic (Middle Carnian–Rhaetian) radiolarians in the volcano-sedimentary sequences of the Kocali Complex, SE Turkey: correlation with the other Tauride units. J Asian Earth Sci 40:180–200CrossRefGoogle Scholar
  145. Wendt J (1974) Encrusting organisms in deep-sea manganese nodules. In: Hsü KJ, Jenkyns HC (eds) Pelagic sediments: on land and under the sea. Spec Publ Intl Assoc Sediment 1:437–447Google Scholar
  146. Whalen PA, Carter ES (1998) Systematic paleontology. In: Carter ES, Whalen PA, Guex J Biochronology and paleontology of Lower Jurassic (Hettangian and Sinemurian) radiolarians, Queen Charlotte Islands, British Columbia. Geol Surv Canada Bull 496:36–82Google Scholar
  147. Whalen PA, Carter ES (2002) Pliensbachian (Lower Jurassic) Radiolaria from Baja California Sur, Mexico. Micropaleontology 48:97–151Google Scholar
  148. Yao A (1972) Radiolarian fauna from the Mino Belt in the northern part of the Inuyama area, Central Japan, Part I: Spongosaturnalids. J Geosci Osaka City Univ 15:21–65Google Scholar
  149. Yao A (1982) Middle Triassic to Early Jurassic radiolarians from the Inuyama Area, Central Japan. J Geosci Osaka City Univ 25:53–70Google Scholar
  150. Yao A (1997) Faunal change of Early-Middle Jurassic radiolarians. News Osaka Micropal Spec vol 10:155–182Google Scholar
  151. Yeh KY (1992) Triassic Radiolaria from Uson Island, Philippines. Bull Nat Mus Nat Sci 3:51–91Google Scholar
  152. Yeh KY (2011) A Middle Jurassic (upper Bajocian) radiolarian assemblage from Snowshoe Formation, east-central Oregon. Collect Res 24:1–77Google Scholar
  153. Yeh KY, Cheng YN (1996) Jurassic Radiolarians from the northwest coast of Busuanga Island, North Palawan Block, Philippines. Micropaleontology 42:93–124CrossRefGoogle Scholar
  154. Yoshida H (1986) Upper Triassic to Lower Jurassic radiolarian biostratigraphy in Kagamigahara City, Gifu Prefecture, central Japan. J Earth Sci Nagoya Univ 34:1–21Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marco Chiari
    • 1
  • Peter O. Baumgartner
    • 2
  • Daniel Bernoulli
    • 3
  • Valerio Bortolotti
    • 4
  • Marta Marcucci
    • 4
  • Adonis Photiades
    • 5
  • Gianfranco Principi
    • 4
  1. 1.C.N.R.- Istituto di Geoscienze e GeorisorseFlorenceItaly
  2. 2.Institut de Géologie et PaléontologieUniversité de LausanneLausanneSwitzerland
  3. 3.Geologisches InstitutUniversität BaselBaselSwitzerland
  4. 4.Dipartimento di Scienze della TerraFlorenceItaly
  5. 5.Institute of Geology and Mineral Exploration (IGME)AcharnaeGreece

Personalised recommendations