Advertisement

Facies

, Volume 58, Issue 4, pp 477–491 | Cite as

The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea

  • Petar KružićEmail author
  • Pavica Sršen
  • Laura Benković
Original Article

Abstract

The scleractinian coral Cladocora caespitosa deserves a special place among the major carbonate bioconstructors of the Mediterranean Sea. Annual coral skeleton growth, coral calcification, and skeleton density of the colonial coral C. caespitosa taken from 25 locations in the eastern Adriatic Sea were analyzed and compared with annual sea surface temperatures (SST). The growth rates of the coral C. caespitosa from the 25 stations in the Adriatic Sea ranged from 1.92 to 4.19 mm per year, with higher growth rates of the investigated corallites in the southern part of the Adriatic Sea. These growth rates are similar to those measured in other areas of the Mediterranean Sea. The correlation between coral growth and sea temperatures in the Adriatic Sea is seen as follows: An X-radiograph analysis of coral growth in C. caespitosa colonies that are over 60 years old showed that higher growth rates of this coral coincided with a warmer period in the Mediterranean Sea. A positive significant correlation exists between corallite growth rates and SST and coral calcification and SST. A negative correlation exists between coral density and SST. Coral growth rates also showed a correlation with higher eutrophication caused by nearby fish farms, along with a greater depth of the investigated colonies and high bottom currents.

Keywords

Annual growth Coral Cladocora caespitosa Seawater temperature Adriatic Sea 

Notes

Acknowledgments

The authors wish to thank Dr. Helmut Zibrowius from Centre d’Océanologie de Marseille (France) and Dr. Andrea Peirano from ENEA Marine Environment Research Centre, La Spezia (Italy) for their helpful suggestions and support. Special thanks go to Dr. Kevin E. Kohler from the Oceanographic Center, Nova South-Eastern University, Dania Beach (USA) for help with Coral XDS Software. This manuscript was improved by constructive comments made by the anonymous reviewers. The author also thanks all colleagues from the Marine Biology Laboratory, Faculty of Science, Zagreb, and the Institute for Oceanography and Fisheries from Split for fieldwork and laboratory help.

References

  1. Abel EF (1959) Zur Kenntnis der marinen Höhlenfauna unter besonderer Berücksichtigung der Anthozoen. Pubbl Staz Zool Napoli 30:1–94Google Scholar
  2. Aguirre J, Jiménez AP (1998) Fossil analogues of present-day Cladocora caespitosa coral banks: Sedimentary setting, dwelling community, and taphography (Late Pliocene, W Mediterranean). Coral Reefs 17:203–213CrossRefGoogle Scholar
  3. Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108CrossRefGoogle Scholar
  4. Bernasconi MP, Corselli C, Carobene L (1997) A bank of the scleractinian coral Cladocora caespitosa in the Pleistocene of the Crati valley (Calabria, Southern Italy): growth versus environmental conditions. Boll Soc Paleont Ital 36:53–61Google Scholar
  5. Bessat F, Buiges D (2001) Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 175:381–392CrossRefGoogle Scholar
  6. Bianchi CN (1997) Climate change and biological response in the marine benthos. Proc Ital Assoc Oceanol Limnol 12:3–20Google Scholar
  7. Bianchi CN (2002) Bioconstruction in marine ecosystems and Italian marine biology. Biol Mar Mediterr 8(1):112–130Google Scholar
  8. Bianchi CN, Morri C (1996) Ficopomatus ‘reefs’ in the Po River Delta (northern Adriatic): their constructional dynamics, biology, and influences on the brackish-water biota. PSZN I: Mar Ecol 17:51–66CrossRefGoogle Scholar
  9. Bianchi CN, Morri C (2004) Climate change and biological response in Mediterranean Sea ecosystems—a need for broad-scale and long-term research. Ocean Chall 13(2):32–36Google Scholar
  10. Buljan M, Špan A (1976) Hidrografska svojstva Mljetskih jezera i susjednog mora. Acta Adriat 6(12):1–224Google Scholar
  11. Carricart-Ganivet JP, Barnes DJ (2007) Densitometry from digitized images of X-radiographs: methodology for measurement of coral skeletal density. J Exp Mar Biol Ecol 344:67–72CrossRefGoogle Scholar
  12. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian sea (NW Mediterranean), summer 1999. Ecol Lett 3:284–293CrossRefGoogle Scholar
  13. Cocito S, Ferdeghini F (2001) Carbonate standing stock and carbonate production of the bryozoan Pentapora fascialis in the north-western Mediterranean. Facies 45:25–30CrossRefGoogle Scholar
  14. Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA 106:6176–6181CrossRefGoogle Scholar
  15. Crabbe MJC (2008) Climate change, global warming and coral reefs: modelling the effects of temperature. Comput Biol Chem 32:311–314CrossRefGoogle Scholar
  16. Cushman-Roisin B, Gačić M, Poulain P-M, Artegiani A (2001) Physical oceanography of the Adriatic Sea. Kluwer, DordrechtGoogle Scholar
  17. Fabricius K (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Poll Bull 50:125–146CrossRefGoogle Scholar
  18. Ferrier-Pagès C, Tambutté E, Zamoum T, Segonds N, Merle P-L, Bensoussan N, Allemand D, Garrabou J, Tambutté S (2009) Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. J Exp Biol 212:3007–3015CrossRefGoogle Scholar
  19. Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438CrossRefGoogle Scholar
  20. Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality event in red coral Corallium rubrum populations in the Provence region (NW Mediterranean). Mar Ecol Progr Ser 217:263–272CrossRefGoogle Scholar
  21. Garrabou J, Coma R, Bally M, Bensoussan N, Chevaldonné P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Lejeusne C, Linares C, Marschal C, Pérez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103CrossRefGoogle Scholar
  22. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937CrossRefGoogle Scholar
  23. Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Biol Ecol 37:105–125CrossRefGoogle Scholar
  24. Hoogenboom M, Beraud E, Ferrier-Pagès C (2010a) Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29:21–29CrossRefGoogle Scholar
  25. Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010b) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol 213:2399–2409CrossRefGoogle Scholar
  26. Jacques TG, Marshal N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae. II. Effects of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Mar Biol 76:135–148CrossRefGoogle Scholar
  27. Kersting DK, Linares C (in press) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol. doi: 10.1111/j.1439-0485.2011.00508.x
  28. Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272CrossRefGoogle Scholar
  29. Kružić P (2002) Marine fauna of the Mljet National Park (Adriatic Sea, Croatia). 1. Anthozoa. Nat Croat 11:265–292Google Scholar
  30. Kružić P (2005) Ecology of the coral Cladocora caespitosa (Linnaeus, 1767) and its banks in the Adriatic Sea. Ph.D. thesis, University of Zagreb, Zagreb, 198 pGoogle Scholar
  31. Kružić P, Benković L (2008) Bioconstructional features of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Mar Ecol 29:125–139CrossRefGoogle Scholar
  32. Kružić P, Požar-Domac A (2002) Skeleton growth rates of coral bank of Cladocora caespitosa (Anthozoa, Scleractinia) in Lake Veliko Jezero (Mljet National Park). Period Biol 104:123–129Google Scholar
  33. Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536CrossRefGoogle Scholar
  34. Kružić P, Požar-Domac A (2007) Impact of tuna farming on the banks of the coral Cladocora caespitosa in the Adriatic Sea. Coral Reefs 26:665CrossRefGoogle Scholar
  35. Kružić P, Žuljević A, Nikolić V (2008) Spawning of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea. Coral Reefs 27:337–341CrossRefGoogle Scholar
  36. Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y (1998) Effect of temperature on bleaching of coral Oculina patagonica by Vibrio AK-1. Mar Ecol Progr Ser 171:131–137CrossRefGoogle Scholar
  37. Laborel J (1961) Sur un cas particulier de concrétionnement animal. Concrétionnement à Cladocora caespitosa (L.) dans le Golfe de Talante. Rapp P-V Réun Comm Int Explor Sci Mer 16:429–432Google Scholar
  38. Laborel J (1987) Marine biogenic constructions in the Mediterranean: a review. Sci Rep Port-Cros Natl Park 13:97–126Google Scholar
  39. Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 24:250–260CrossRefGoogle Scholar
  40. Lough JM, Barnes DJ (1997) Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy seawater temperature and a background of variability against which to identify unnatural change. J Exp Mar Biol Ecol 211:29–67CrossRefGoogle Scholar
  41. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243CrossRefGoogle Scholar
  42. Montagna P, McCulloch M, Mazzoli C, Silenzi S, Odorico R (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (~weekly) trace element systematics. Quat Sci Rev 26:441–462CrossRefGoogle Scholar
  43. Montagna P, Silenzi S, Devoti S, Mazzoli C, McCulloch M, Scicchitano G, Taviani M (2008) Climate reconstructions and monitoring in the Mediterranean Sea: a review on some recently discovered high-resolution marine archives. Rend Fis Acc Lincei 19:121–140CrossRefGoogle Scholar
  44. Morri C, Peirano A, Bianchi CN, Sassarini M (1994) Present-day bioconstructions of the hard coral, Cladocora caespitosa (L.) (Anthozoa, Scleractinia), in the eastern Ligurian Sea (NW Mediterranean). B. Biol Mar Medit 1:371–372Google Scholar
  45. Morri C, Peirano A, Bianchi CN (2001) Is the Mediterranean coral Cladocora caespitosa an indicator of climatic change? Arch Oceanogr Limnol 22:139–144Google Scholar
  46. Oliver Valls JA (1989) Développement de Cladocora caespitosa (Linné, 1767) en aquarium. Bull Inst Oceanogr Monaco 5:205–209Google Scholar
  47. Pax F, Müller I (1962) Die Anthozoenfauna der Adria. In: Fauna et Flora Adriatica. Institut za Oceanografiju i Ribarstvo, Split 343 pGoogle Scholar
  48. Peirano A, Kružić P (2004) Growth comparison between Ligurian and Adriatic samples of the coral Cladocora caespitosa: first results. Biol Mar Medit 11:166–168Google Scholar
  49. Peirano A, Morri C, Mastronuzzi G, Bianchi CN (1998) The coral Cladocora caespitosa (Anthozoa, Scleractinia) as a bioherm builder in the Mediterranean Sea. Mem Descr Carta Geol d’It 52(1994):59–74Google Scholar
  50. Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Progr Ser 185:195–201CrossRefGoogle Scholar
  51. Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). Facies 44:75–80CrossRefGoogle Scholar
  52. Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrú P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Global Planet Change 40:195–200CrossRefGoogle Scholar
  53. Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calix growth, polyp tissue and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409CrossRefGoogle Scholar
  54. Peirano A, Kružić P, Mastronuzzi G (2009) Growth of Mediterranean reef of Cladocora caespitosa (L.) in the Late Quaternary and climate inferences. Facies 55:325–333CrossRefGoogle Scholar
  55. Rodolfo-Metalpa R, Peirano A, Morri C, Bianchi CN (1999) Coral calcification rates in the Mediterranean scleractinian coral Cladocora caespitosa (L. 1767). Proc Ital Assoc Oceanol Limnol 13:291–299Google Scholar
  56. Rodolfo-Metalpa R, Bianchi CN, Peirano A (2000) Coral mortality in NM Mediterranean. Coral Reefs 19:24CrossRefGoogle Scholar
  57. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Ital J Zool 72:271–276CrossRefGoogle Scholar
  58. Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pagès C (2006) Growth and photosynthesis of two Mediterranean corals, Cladocora caespitosa and Oculina patagonica, under normal and elevated temperatures. J Exp Biol 209:4546–4556CrossRefGoogle Scholar
  59. Rodolfo-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pagès C (2008) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27:17–25CrossRefGoogle Scholar
  60. Rodolfo-Metalpa R, Martin S, Ferrier-Pagès C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300CrossRefGoogle Scholar
  61. Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso JP, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1:308–312CrossRefGoogle Scholar
  62. Schiller C (1993a) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. D. Distribution and biometry. PSZNI Mar Ecol 14:205–219CrossRefGoogle Scholar
  63. Schiller C (1993b) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): II. E. Energy budget. PSZNI Mar Ecol 14:221–238CrossRefGoogle Scholar
  64. Scoffin TP, Tudhope AW, Brown BE, Chansang H, Cheeney RF (1992) Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11:1–11CrossRefGoogle Scholar
  65. Simkiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev 39:487–505CrossRefGoogle Scholar
  66. Sparnocchia S, Schiano ME, Picco P, Bozzano R, Cappelletti A (2006) The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann Geophys 24:443–452CrossRefGoogle Scholar
  67. Tremblay P, Peirano A, Ferrier-Pagès C (2011) Heterotrophy in the Mediterranean symbiotic coral Cladocora caespitosa: comparison with two other scleractinian species. Mar Ecol Progr Ser 422:165–177CrossRefGoogle Scholar
  68. Vučetić T (1995) About oceanographical research in Veliko and Malo Jezero on the Island of Mljet. Ekol Monogr 6:401–413Google Scholar
  69. Yamashiro H (1995) The effects of HEPB, an inhibitor of mineral deposition, upon photosynthesis and calcification in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 191:57–63CrossRefGoogle Scholar
  70. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Petar Kružić
    • 1
    Email author
  • Pavica Sršen
    • 1
  • Laura Benković
    • 1
  1. 1.Laboratory for Marine Biology, Department of Zoology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations