Advertisement

Facies

, Volume 59, Issue 2, pp 425–449 | Cite as

Environmental changes close to the Lower–Middle Devonian boundary; the Basal Choteč Event in the Prague Basin (Czech Republic)

  • S. Vodrážková
  • J. Frýda
  • T. J. Suttner
  • L. Koptíková
  • P. Tonarová
Original Article

Abstract

The Basal Choteč or jugleri Event, close above the Lower–Middle Devonian boundary, has been regarded as a minor but important eustatic transgressive event, which is characterized by significant environmental changes, faunal extinction, appearance of new forms, and maximum radiation, particularly among the goniatites. This study contributes to a more precise stratigraphic allocation of the event, and provides a reconstruction of paleoenvironmental settings in the type area of the event, the Prague Basin (Czech Republic). The beginning of a transgression is recorded already in the Třebotov Limestone (partitus Zone, Eifelian, early Middle Devonian). The basin-wide change in the sedimentation pattern (onset of peloidal and crinoidal grainstones (calciturbidites) of the Choteč Formation) corresponding to the uppermost partitus and costatus conodont zones, base of Nowakia (Dmitriella) sulcata sulcata dacryoconarid Zone, and Pinacites jugleri goniatite Zone is interpreted here to be linked to a maximum flooding of the basin. A hypothesis of enhanced nutrient load during sedimentation of the Choteč Formation is suggested here as a triggering mechanism for intense micritization and peloid formation and prasinophyte blooms, which could be, along with a greater depositional depth, responsible for oxygen deficiency and consequent reduction of diversity and habitat tracking among benthic invertebrates.

Keywords

Basal Choteč Event Lower–Middle Devonian Prague Basin Microfacies analysis Carbon isotope geochemistry Environmental changes 

Notes

Acknowledgments

This work was supported by the Czech-American Cooperation Program (Kontakt ME08011), grant from the Grant Agency of the Czech Republic (210/10/2351) and partly P210/12/2018, projects of the Czech Geological Survey (332500, 333300, 334000), and the NAP0001 (subproject of IGCP 497). The first author also gratefully acknowledges the Palaeontological Association for the Sepkoski Grant award, which allowed the study to proceed. Maya Elrick (University of New Mexico) and an anonymous reviewer are thanked for their meticulous reviews, which resulted in substantial improvement of the manuscript. Franz T. Fürsich (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany) is to be thanked for the editorial work and valuable comments. Charles VerStraeten (New York State Museum) is deeply appreciated for his comments and suggestions on the earlier version of the text. The linguistic help of Gilbert Klapper (Northwestern University Evanstone, Iowa) is gratefully acknowledged. Axel Munnecke and the Stable Isotope Laboratory of the Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany) provided part of the δ13C analysis from the U Němců section, which is deeply appreciated. Radek Vodrážka (Czech Geological Survey, Czech Republic) is to be thanked for his help during fieldwork and also for useful remarks on the manuscript. Mr. Němec (Karlštejn) is gratefully acknowledged for access to his as well as for his kind help during sampling. Naděžda Hrdličková (former employee of the Czech Geological Survey, Prague) is to be thanked for her help during laboratory processing of conodont samples. Although numerous colleagues are thanked for their help, responsibility for possible errors remains entirely with the authors. This is a contribution to IGCP 596.

References

  1. Alberti GKB (1977) Zur Dacryoconarida Fauna aus dem Grenzbereich Unter-Devon/Mittel-Devon. Senckenberg Leth 58:263–269Google Scholar
  2. Alberti GKB (1978) Tentaculiten (Dacryoconarida) und Trilobiten aus den Wissenbacher Schiefern und aus dem Ballersbacher Kalk (Devon, Rheinisches Schiefergebirge). N Jb Geol Paläont Mh 5:257–266Google Scholar
  3. Alberti GKB (1979) Zur Dacryoconariden (Tentaculiten) Chronologie des herzynischen Unter- und Mittel-Devons. Senckenberg Leth 60:223–241Google Scholar
  4. Alberti GKB (1980) Neue Daten zur Grenze Unter-/Mittel-Devon, vornehmlich aufgrund der Tentaculiten und Trilobiten im Tafilalt (SE Marokko). N Jb Geol Paläont Mh 10:581–594Google Scholar
  5. Alberti GKB (1981) Daten zur stratigraphischen Verbreitung der Nowakiidae (Dacryoconarida) im Devon von NW Afrika (Marokko, Algerien). Senckenberg Leth 62:205–216Google Scholar
  6. Alberti GKB (1982) Dacryconarids and correlation of Lower–Middle Devonian boundary beds between the Eifel area and the Harz-Rhenish Slate Mountains-Bohemia-North Africa areas. Newsl Stratigr 11:17–21Google Scholar
  7. Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes and marine anoxic events. Philos Trans R Soc Lond B 353:113–130CrossRefGoogle Scholar
  8. Allison PA, Wignall PB, Brett CE (1995) Palaeo-oxygenation: effects and recognition. In: Bosence DWJ, Allison A (eds) Marine palaeoenvironmental analysis from fossils. Geol Soc Spec Publ 83:97–112Google Scholar
  9. Artyuszkova OV, Maslov VA (2008) Detailed correlation of the Devonian deposits in the South Urals and some aspects of their formation. Bull Geosci 3:391–399CrossRefGoogle Scholar
  10. Avlar H, May A (1997) Zur Fauna und Stratigraphie der cultrijugatus-Schichten (Wende Unter-/Mittel-Devon) im West-Sauerland (Rheinisches Schiefergebirge). Coral Res Bull 5:103–119Google Scholar
  11. Becker RT, House MR (1994) International Devonian goniatite zonation, Emsian to Frasnian, with new records from Morocco. Cour Forsch Inst Senckenberg 169:79–135Google Scholar
  12. Berkyová S (2009) Lower–Middle Devonian (upper Emsian-Eifelian, serotinus-kockelianus zones) conodont faunas from the Prague Basin, the Czech Republic. Bull Geosci 84:667–686CrossRefGoogle Scholar
  13. Berkyová S, Munnecke A (2010) “Calcispheres” as source of lime mud and peloids—evidence from the Devonian of the Prague Basin, Czech Republic. Bull Geosci 85:585–602CrossRefGoogle Scholar
  14. Bouček B (1964) The tentaculites of Bohemia. Their morphology, taxonomy, ecology, phylogeny and biostratigraphy. Publishing House of the Czechoslovak Academy of Sciences, Prague, p 215Google Scholar
  15. Brett, CE, Ivany LC, Bartholomew AJ, DeSantis MK, Bird GC (2009) Devonian ecological-evolutionary subunits in the Appalachian Basin: a revision and a test of persistence and discreteness. In: Koenigshof P (ed) Devonian change; case studies in paleogeography and paleoecology. Geol Soc Lond Spec Publ 314:7–36Google Scholar
  16. Buggisch W, Joachimski MM (2006) Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Palaeogeogr Palaeoclimatol Palaeoecol 240:68–88CrossRefGoogle Scholar
  17. Buggisch W, Mann U (2004) Carbon isotope stratigraphy of Lochkovian to Eifelian limestones from the Devonian of central and southern Europe. Int J Earth Sci 93:521–541Google Scholar
  18. Bultynck P, Walliser OH (2000) Devonian boundaries in the Moroccan Anti-Atlas. Cour Forsch Inst Senckenberg 225:211–226Google Scholar
  19. Caputo MV (1998) Ordovician-Silurian glaciations and global sea-level changes. In: Landing L, Johnson ME (eds) Silurian cycles-linkages of dynamic stratigraphy with atmospheric, oceanic, and tectonic changes. New York State Mus Bull 491:15–25Google Scholar
  20. Carls P (1979) Emsian-Eifelian stratigraphy of the eastern Iberian Chains. In: Garcia-Alcalde JL, Arbizu MA, Garcia-López S, Méndez-Bedia I (eds) Meeting of the international subcommission on Devonian stratigraphy guidebook, Spain, Oviedo, pp 1–44Google Scholar
  21. Carls P, Gandl J, Groos-Uffenorde H, Jahnke H, Walliser OH (1972) Neue Daten zur Grenze Unter-/Mittel-Devon. Newsl Stratigr 2:115–147Google Scholar
  22. Carreiro-Silva M, McClanahan TR, Kiene WE (2005) The role of inorganic nutrients and herbivory in controlling microbioerosion of carbonate substratum. Coral Reefs 24:214–221CrossRefGoogle Scholar
  23. Carreiro-Silva M, McClanahan TR, Kiene WE (2009) Effects of inorganic nutrients and organic matter on microbial euendolithic community composition and microbioerosion rates. Mar Ecol Progr Ser 392:1–15CrossRefGoogle Scholar
  24. Cháb J, Breiter K, Fatka O, Hladil J, Kalvoda J, Šimůnek Z, Štorch P, Vašíček Z, Zajíc J, Zapletal J (2008) Outline of the geology of the Bohemian Massif: basement rocks and their Carboniferous and Permian cover. Czech Geological Survey, Prague, p 284 (in Czech)Google Scholar
  25. Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M (1995) Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeogr Palaeoclimatol Palaeoecol 113:189–198CrossRefGoogle Scholar
  26. Chlupáč I (1959) Faciální vývoj a biostratigrafie břidlic dalejských a vápenců hlubočepských (Eifel) ve středočeském devonu. Sbor Ústř Úst Geol 25:445–511 (in Czech)Google Scholar
  27. Chlupáč I (1977) The phacopid trilobites of the Silurian and Devonian of Czechoslovakia. Rozpr Ústř Úst Geol 43:1–172Google Scholar
  28. Chlupáč I (2000) Cyclicity and duration of Lower Devonian stages: observations from the Barrandian area, Czech Republic. N Jb Geol Paläont Abh 215:97–124Google Scholar
  29. Chlupáč I, Kukal Z (1986) Reflection of possible global Devonian events in the Barrandian area, C.S.S.R. In: Walliser O (ed) Global bio-events. Lect Notes Earth Sci 8:169–179Google Scholar
  30. Chlupáč I, Kukal Z (1988) Possible global events and the stratigraphy of the Palaeozoic of the Barrandian (Cambrian-Middle Devonian, Czechoslovakia). Sbor Geol Věd Geol 43:83–146Google Scholar
  31. Chlupáč I, Lukeš P, Zikmundová J (1977) Barrandian 1977, a field trip guidebook. Field conference of the international subcommission on Devonian stratigraphy, p 23Google Scholar
  32. Chlupáč I, Lukeš P, Zikmundová J (1979) The Lower/Middle Devonian boundary beds in the Barrandian area, Czechoslovakia. Geol et Palaeont 13:125–156Google Scholar
  33. Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, p 183Google Scholar
  34. Dieken G (1996) Karbonatmikrofazies, Paläoökologie und Genese der Stromatactis-Strukturen des Suchomasty- und des basalen Acanthopyge-Kalksteins im Barrandium (Tschechische Republik). Aachener Geowiss Beitr 19:1–148Google Scholar
  35. Dunham RJ (1962) Classification of carbonate rocks according to depositional structure. In: Ham WE (ed) Classification of carbonate rocks. Am Assoc Petrol Geol Mem 1:108–112Google Scholar
  36. Ebbighausen V, Bockwinkel J, Becker TR, Aboussalam SZ, Bultynck P, El Hassani A, Nubel H (2004) Late Emsian and Eifelian stratigraphy at Oufrane (Tata region, eastern Dra Valley, Morocco), Devonian of the western Anti Atlas: correlations and events. Doc Inst Sci Rabat 19:44–52Google Scholar
  37. Ellwood BB, Garcia-Alcade JL, El Hassani A, Hladil J, Soto FM, Truyóls-Massoni M, Weddige K, Koptíková L (2006) Stratigraphy of the Middle Devonian boundary: formal definition of the susceptibility magnetostratotype in Germany with comparisons to sections in the Czech Republic, Morocco and Spain. Tectonophysics 418:31–49CrossRefGoogle Scholar
  38. Elrick M, Berkyová S, Klapper G, Sharp Z, Joachimski M, Frýda J (2009) Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the Early-Middle Devonian greenhouse world. Palaeogeogr Palaeoclimatol Palaeoecol 276:170–181CrossRefGoogle Scholar
  39. Embry AF, Klovan JE (1972) Absolute water depths limits of Late Devonian paleoecological zones. Geol Rundsch 61:672–686CrossRefGoogle Scholar
  40. Fay LC, Saltzman MR (2006) δ13C trends from New York’s Onondaga Fm.: global or local? Implications for stratigraphy. Geol Soc Am Abst Progr 38:73Google Scholar
  41. Franke W (1989) Variscan plate tectonics in Central Europe—current ideas and open questions. Tectonophysics 169:221–228CrossRefGoogle Scholar
  42. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179:337–354Google Scholar
  43. García-Alcalde JL (1998) Devonian events in northern Spain. Newsl Stratigr 36:157–175Google Scholar
  44. García-Alcalde JL (coord), Carls P, Pardo Alonso MV, Sánz López J, Soto F, Truyóls-Massoni M, Valenzuela-Ríos JI (2002) Devonian. In: Gibbons W, Moreno T (eds) The geology of Spain. Geological Society, London, pp 67–91Google Scholar
  45. Glasmacher UA, Mann U, Wagner GA (2002) Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apatite fission-tract analysis. Tectonophysics 359:381–402CrossRefGoogle Scholar
  46. Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclimatol Palaeoecol 63:275–291CrossRefGoogle Scholar
  47. Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398CrossRefGoogle Scholar
  48. Havlíček V (1981) Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician-Middle Devonian; Barrandian area-central Bohemia). Sbor Geol Věd Geol 35:7–48Google Scholar
  49. Henn AH (1985) Biostratigraphie und Fazies des hohen Unter-Devon bis tiefen Ober-Devon der Provinz Palencia, Kantabrisches Gebirge, N-Spanien. Göttinger Arb Geol Paläont 26:1–100Google Scholar
  50. Herman Y, Rosenberg PE (1969) Pteropods as bathymetric indicators. Mar Geol 7:169–173CrossRefGoogle Scholar
  51. Hladil J (2005) The formation of stromatactis-type fenestral structures during the sedimentation of experimental slurries—a possible clue to a 120-year-old puzzle about stromatactis. Bull Geosci 80:193–211Google Scholar
  52. Holmes KE, Edinger EN, Hariyadi S, Limmon GV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Poll Bull 40:606–617CrossRefGoogle Scholar
  53. House MR (1962) Observations on the ammonoid succession of the North American Devonian. J Paleontol 36:247–284Google Scholar
  54. Hutchins DA, Hare CE, Weaver RS, Zhang Y, Firme GF, DiTullio GR, Alm MB, Riseman SF, Maucher JM, Geesey ME, Trick CG, Smith GJ, Rue EL, Conn J, Bruland KW (2002) Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling. Limnol Oceanogr 47:997–1011CrossRefGoogle Scholar
  55. Jahnke H, Henn A, Mader H, Schweineberg J (1983) Silur und Devon im Arauz-Gebiet (Prov. Palencia, N-Spanien). Newsl Stratigr 13:40–66Google Scholar
  56. Johnson JG, Klapper G, Sandberg CA (1985) Devonian eustatic fluctuations in Euramerica. Geol Soc Am Bull 96:567–587CrossRefGoogle Scholar
  57. Kachlík V (1999) Relationship between Moldanubicum, the Kutná Hora crystalline unit, and Bohemicum (Central Bohemia, Czech Republic): a result of the polyphase nappe tectonics. J Czech Geol Soc 44:201–289Google Scholar
  58. Kaufmann B (1998) Facies, stratigraphy and diagenesis of Middle Devonian reef- and mud-mounds in the Mader (eastern Anti-Atlas, Morocco). Acta Geol Pol 48:43–106Google Scholar
  59. Kaźmierczak J (1975) Colonial Volvocales (Chlorophyta) from the Upper Devonian of Poland and their paleogeographical significance. Acta Palaeont Polon 29:73–85Google Scholar
  60. Kaźmierczak J (1976) Volvocacean nature of some Paleozoic nonradiosphaerid calcispheres and parathuramminid “foraminera”. Acta Paleont Polon 10:73–85Google Scholar
  61. Kemp AES (1996) Laminated sediments as paleo-indicators. Paleoclimatology and paleoceanography from laminated sediments. Geol Soc Lond Spec Publ 116:7–12Google Scholar
  62. Klapper G (1971) Sequence within the conodont genus Polygnathus in the New York lower Middle Devonian. Geol et Palaeont 5:59–79Google Scholar
  63. Klapper G (1977) Lower–Middle Devonian boundary conodont sequence in the Barrandian area of Czechoslovakia. Čas Miner Geol 22:401–410Google Scholar
  64. Klapper G, Ziegler W, Mashkova TV (1978) Conodonts and correlation of Lower–Middle Devonian boundary beds in the Barrandian area of Czechoslovakia. Geol et Palaeont 12:103–116Google Scholar
  65. Klug C (2002a) Quantitative stratigraphy and taxonomy of late Emsian and Eifelian ammonoids of the eastern Anti-Atlas (Morocco). Cour Forsch Inst Senckenberg 238:1–108Google Scholar
  66. Klug C (2002b) Conch parameters and habitats of Emsian and Eifelian ammonoids from the Tafilalt (Morocco) and their relation to global events. Abh Geol B-A 57:523–538Google Scholar
  67. Klug C, Korn D, Reisdorf A (2000) Ammonoid and conodont stratigraphy of the late Emsian to early Eifelian (Devonian) at the Jebel Ouaoufilal (near Taouz, Tafilalt, Morocco). Trav Inst Sci Rabat Série Géol & Géogr Phys 20:45–56Google Scholar
  68. Koop K, Booth D, Broadbent A, Brodie J, Bucher D, Capone D, Coll J, Dennison W, Erdmann M, Harrison P (2000) ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar Poll Bull 42:91–120CrossRefGoogle Scholar
  69. Koptíková L (2011) Precise position of the Basal Choteč event and evolution of sedimentary environment close above the Lower–Middle Devonian boundary: magnetic susceptibility, gamma-ray spectrometric, lithological and geochemical record in Prague Synform (Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol 304:96–112CrossRefGoogle Scholar
  70. Kraft P, Lehnert O, Frýda J (2004) Evolution of the Prague Basin reflecting the lifecycle of the Rheic Ocean. In: Kraft P, Linnemann U, Mazur S (eds) Gondwana margin of the Rheic Ocean in the Bohemian Massif. Excursion guidebook and abstracts. Charles University, Prague, p 101Google Scholar
  71. Kříž J (1991) The Silurian of the Prague Basin (Bohemia): tectonic, eustatic, and volcanic controls on facies and faunal development. Spec Pap Palaeont 44:179–204Google Scholar
  72. Kröger B (2008) Nautiloids before and during the ammonoid origin in a Siluro-Devonian section of the Tafilalt (Morocco). Spec Pap Palaeont 79:1–112Google Scholar
  73. Kröger B, Klug C, Mapes R (2005) Soft-tissue attachments in orthocerid and bactritid cephalopods from the Early and Middle Devonian of Germany and Morocco. Acta Palaeont Polon 50:329–342Google Scholar
  74. Krs M, Krsová P, Pruner P, Havlíček V (1986) Paleomagnetism, palaeogeography and multi-component analysis of magnetisation of Ordovician rocks of the Barrandian in the Bohemian Massif. Sbor Geol Věd Užitá Geofyz 22:9–48Google Scholar
  75. Kukal Z (1972) Open-space structures in the Devonian limestones of the Barrandian (Central Bohemia). Čas Mineral Geol 16:345–362Google Scholar
  76. Kukal Z, Jäger O (1988) Siliciclastic signal of the Variscan orogenesis: the Devonian Srbsko Formation of Central Bohemia. Věst Ústř Úst Geol 63:65–80Google Scholar
  77. Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198 CrossRefGoogle Scholar
  78. Lafarge E, Marquis F, Poillot D (1998) Rock-Eval 6 application in hydrocarbon exploration, production, and soil contamination studies. Rev I Fr Petrol 56:421–437Google Scholar
  79. Lukeš P (1989) Tentaculites from the Lower/Middle Devonian section in Prague-Barrandov. Věst Ústř Úst Geol 64:194–204Google Scholar
  80. Machado G, Hladil J, Slavik L, Koptikova L, Moreira N, Fonseca M, Fonseca P (2010) An Emsian-Eifelian Calciturbidite sequence and the possible correlatable pattern of the Basal Choteč event in Western Ossa-Morena Zone, Portugal (Odivelas Limestone). Geol Belg 13:431–446Google Scholar
  81. Macurda DB, Meyer DL, Roux M (1978) The crinoid stereom. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, Part T, Echinodermata 2. Kansas University Press, Lawrence, pp 217–228Google Scholar
  82. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  83. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  84. Melichar R (2004) Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum 30:167–187Google Scholar
  85. Miller CB, Frost BW, Booth B, Wheeler PA, Landry MR, Welschmeyer N (1991) Ecological processes in the subarctic Pacific: iron limitation cannot be the whole story. Oceanography 4:71–78CrossRefGoogle Scholar
  86. Mitchell BG, Brody EA, Holm-Hansen O, McClain C, Bishop J (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the southern Ocean. In: Chisholm S, Morel F (eds) What controls phytoplankton production in nutrient-rich areas of the open sea? Limnol Oceanogr 36:1662–1677Google Scholar
  87. Montesinos JR (1987) Anarcestina (Ammonoidea) del Devónico Palentino (N. de España). Bol Real Soc Esp Hist Nat Geol 82:113–123Google Scholar
  88. Morzadec P (1983) Le Dévonien (Emsien-Famennien) de la rade de Brest (Massif Armoricain). Lithologie, cartographie, stratigraphie, paléogéographie. Géol Fr 2:269–310Google Scholar
  89. Obrhel J (1958) Die Flora der Choteč Kalke und Třebotov-Kalke (Eifel) des mittelböhmischen Devons. Sbor Ústř Úst Geol 25:99–107Google Scholar
  90. Perry CT (1998) Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology 45:39–51CrossRefGoogle Scholar
  91. Peterhänsel A, Pratt BR (2001) Nutrient-triggered bioerosion on a giant carbonate platform masking the postextinction Fammenian benthic community. Geology 29:1079–1082CrossRefGoogle Scholar
  92. Petr V, Prokop RJ, Mihaljevič M, Šebek O (1997) Chemical composition of the crinoid skeletal remains (Echinodermata) in the weathered limestones of the Bohemian Massif. J Czech Geol Soc 42:41–58Google Scholar
  93. Petránek J (1950) Petrografická studie o nejmladších devonských vrstvách v Dalejském údolí u Prahy. Rozpr Čes Akad Věd Umění Tř II 60:1–16Google Scholar
  94. Plusquelec Y, Hladil J (2001) Tabulate corals of Ibarmaghian affinities in the Upper Emsian of Bohemia. Geol Palaeontol 35:31–51Google Scholar
  95. Prauss ML (2007) Availability of reduced nitrogen chemospecies in photic-zone waters as the ultimate cause for prasinophyte prosperity. Palaios 22:489–499CrossRefGoogle Scholar
  96. Requadt H, Weddige K (1978) Lithostratigraphie und Conodontenfaunen der Wissenbacher Fazies und ihrer Äquivalente in der südwestlichen Lahnmulde (Rheinisches Schiefergebirge). Mainzer Geowiss Mitt 7:183–237Google Scholar
  97. Retallack GJ (1997) Early forest soils and their role in Devonian global change. Science 276:583–585CrossRefGoogle Scholar
  98. Sapelnikov VP, Mizens LI (1980) Novoe v probleme granicy nizhnego i srednego devona na Urale. In: Paleontologiya i biostratigrafiya srednego paleozoya Urala, Sverdlovsk, pp 23–38Google Scholar
  99. Schubert M (1996) Die dysaerobe Biofazies der Wissenbacher Schiefer (Rheinisches Schiefergebirge, Harz, Devon). Göttinger Arb Geol Paläont 68:1–131Google Scholar
  100. Scotese CR (1997) Paleogeographic atlas, PALEOMAP progress report 90-0497. Department of Geology, University of Texas at Arlington, ArlingtonGoogle Scholar
  101. Smith AB (1980) Stereom microstructure of the echinoid test. Spec Pap Palaeont 25:1–81Google Scholar
  102. Struve W (1982) The Eifelian within the Devonian. Frame, history, boundaries, definitions. In: Ziegler W, Werner R (eds) On Devonian stratigraphy and palaeontology of the Ardenno-Rhenish Mountains and related Devonian matters. Cour Forsch Inst Senckenberg 55:401–432Google Scholar
  103. Struve W (1990) Paläozoologie III. Cour Forsch Inst Senckenberg 127:251–279Google Scholar
  104. Tait J (1999) New Early Devonian paleomagnetic data from NW France: paleogeography and implications for the Armorican microplate hypothesis. J Geophys Res 104:2831–2839CrossRefGoogle Scholar
  105. Takeda S, Tsuda A (2005) An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS): introduction and summary. Progr Oceanogr 64:95–109CrossRefGoogle Scholar
  106. Tyson RV (1995) Sedimentary organic matter, organic facies and palynofacies. Chapman & Hall, London, p 615Google Scholar
  107. van Geldern R, Joachimski MM, Day J, Jansen U, Alvarez F, Yolkin EA, Ma XP (2006) Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeogr Palaeoclimatol Palaeoecol 240:47–67CrossRefGoogle Scholar
  108. Ver Straeten CA (2007) Basinwide stratigraphic synthesis and sequence stratigraphy, upper Pragian, Emsian and Eifelian stages (Lower to Middle Devonian), Appalachian Basin. In: Becker RT, Kirchgasser WT (eds) Devonian events and correlations. Geol Soc Lond Spec Publ 278:39–81Google Scholar
  109. Vogel K, Gektidis M, Golubić S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implication for paleoecological reconstruction. Lethaia 33:190–204CrossRefGoogle Scholar
  110. Walliser OH (1985) Natural boundaries and Commision boundaries in the Devonian. Cour Forsch Inst Senckenberg 75:401–408Google Scholar
  111. Weddige K (1982) The Wetteldorf Richtschnitt as boundary stratotype from the view point of conodont stratigraphy. In: Ziegler W, Werner R (eds) On Devonian stratigraphy and palaeontology of the Ardenno-Rhenish Mountains and related Devonian matters. Cour Forsch Inst Senckenberg 55:26–37Google Scholar
  112. Weddige K (1988) Eifel conodonts. In: Ziegler W (ed) 1st International conodont symposium (ECOS V). Cour Forsch Inst Senckenberg 102:103–110Google Scholar
  113. Wendt J, Kaufmann B, Belka Z, Klug C, Lubeseder S (2006) Sedimentary evolution of a Palaeozoic basin and ridge system: the Middle and Upper Devonian of the Ahnet and Mouydir (Algerian Sahara). Geol Mag 143:269–299CrossRefGoogle Scholar
  114. Wrenn JH, Hannah MJ, Raine JI (1998) Diversity and palaeoenvironmental significance of Late Cainozoic marine palynomorphs from the CRP-1 Core, Ross Sea, Antarctica. Terra Ant 5:553–570Google Scholar
  115. Yolkin EA, Gratsianova RT, Izokh NG, Yazikov AY, Bakharev NK (1997) Devonian sea-level fluctuations on the south-western margin of the Siberian continent. Cour Forsch Inst Senckenberg 199:83–98Google Scholar
  116. Yolkin EA, Gratsianova RT, Izokh NG, Yazikov AY, Bakharev NK, Alekseeva RE, Erina MV, Kim AI, Shishkina GR (2000) Devonian standard boundaries within the shelf belt of the Siberian Old Continent (southern part of western Siberia, Mongolia, Russian Far East) and in the South Tien Shan. In: Bultynck P (ed) Subcommission on Devonian stratigraphy, recognition of Devonian series and stage boundaries in geological areas. Cour Forsch Inst Senckenberg 225:305–318Google Scholar
  117. Yolkin EA, Bakharev NK, Izokh NG, Gratsianova RT, Kipriyanova TP, Obut OT (2005) Devonian terrestrial and marine environments: from continent to shelf, joint conference IGCP 499/SDS, Devonian sequences of Salair, Novosibirsk, Rudny & Gorny Altai: field excursion guidebook. Novosibirsk Publishing House of SB RAS “GEO” Branch, Novosibirsk, pp 1–82Google Scholar
  118. Zusková J (1991) Conodont faunas from the Lower/Middle Devonian section in Praha-Barrandov. Věst Ústř Úst Geol 66:107–112Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Vodrážková
    • 1
    • 5
  • J. Frýda
    • 1
    • 2
  • T. J. Suttner
    • 3
  • L. Koptíková
    • 4
  • P. Tonarová
    • 1
  1. 1.Czech Geological SurveyPrague 1Czech Republic
  2. 2.Faculty of Environmental SciencesCULSPrague 6Czech Republic
  3. 3.CPSAAustrian Academy of Sciences c/o Institute for Earth Science, University of GrazGrazAustria
  4. 4.Institute of GeologyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  5. 5.GeoZentrum Nordbayern, Fachgruppe PaläoumweltFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations