, Volume 58, Issue 3, pp 415–443 | Cite as

Episodic sedimentation on a peri-Tethyan ridge through the Middle–Late Jurassic transition (Villány Mountains, southern Hungary)

  • A. Vörös
Original Article


The Villány area, as a central part of the Tisza microcontinent/terrane along the European margin of Tethys, was characterized by intense subsidence in the Early and Middle Triassic, followed by a long interruption of subsidence in the Late Triassic to Middle Jurassic. During the Middle–Late Jurassic transition, marine sedimentation started with three distinct sedimentary episodes dated as Late Bathonian, Early Callovian, and Middle–Late Callovian, respectively. The succession is terminated by a thick limestone of Middle Oxfordian age. The sedimentary features, microfacies, and macroinvertebrate associations of these four stratigraphic units are documented and illustrated. The Middle to Late Jurassic sedimentary episodes of the Villány succession record an interplay of local and global factors and paleogeographical changes. At the beginning, local tectonic movements governed the main features of sedimentation, though the role of eustasy was also essential. From the mid-Callovian onwards, global climatic, biotic, and paleoceanographical changes controlled the nature and formation of the local carbonate sediments. The Callovian stromatolites are attributed to the activity of sulphate-reducing bacteria in a deep sublittoral, current-swept environment. Upwelling of eutrophic Tethyan waters is recorded by the prevalence of the Bositra filament microfacies in the Callovian. The long submarine hiatus at around the Callovian–Oxfordian transition mirrors a serious restriction of the carbonate budget, due to sudden cooling and a change in the oceanic current system (opening of a circumglobal Tethyan Passage), and to a higher amount of dissolved CO2. In the Middle Oxfordian, the carbonate production considerably increased in accordance with the sudden global warming.


Jurassic Stratigraphy Sedimentary evolution Villány Western Tethys 



Sincere thanks to Barnabás Géczy and András Galácz, who gave me essential help, both in the fieldwork at Villány and in the improvement of my scientific approaches. Special thanks are due to my colleagues Tamás Budai, István Főzy, András Kaszap, József Pálfy, István Szente, and the late Péter Szabó and János Oravecz, for valuable comments and advices. My views on the paleogeographical interpretation of the Villány Jurassic have been greatly advanced by the numerous joint field trips and discussions with Krzysztof Birkenmajer, Sever Bordea, Géza Császár, Hanspeter Funk, János Haas, Hugh Jenkyns, Gheorghe Mantea, Jozef Michalík, Csaba Péró, Ákos Török, and the late Derek Ager and John Callomon. The manuscript was reviewed by Franz Theodor Fürsich and Michał Krobicki whose corrections and advices are deeply acknowledged.


  1. Ager DV (1965) The adaptation of Mesozoic brachiopods to different environments. Palaeogeogr Palaeoclimatol Palaeoecol 1:143–172Google Scholar
  2. Ager DV (1975) The Jurassic world ocean (with special reference to the North Atlantic). In: Finstad KG, Selley RC (eds) Jurassic northern North Sea symposium. Norv Petrological Society, pp 1–43Google Scholar
  3. Ager DV, Callomon JH (1971) On the Liassic age of the “Bathonian” of Villány (Baranya). Ann Univ Sci Budapest Sect Geol 14:5–16Google Scholar
  4. Allenbach RP (2002) The ups and downs of ‘‘Tectonic Quiescence’’—recognizing differential subsidence in the epicontinental sea of the Oxfordian in the Swiss Jura Mountains. Sediment Geol 150:323–342Google Scholar
  5. Alméras Y, Boullier A, Laurin B (1997) Brachiopodes. In: Cariou E, Hantzpergue P (eds) Biostratigraphie du Jurassique ouest-européen et méditerranéen: zonations paralleles et distribution des invertebrés et microfossiles. Bull Centr Rech Elf Explor Prod Mém 17:169–195Google Scholar
  6. Arkell WJ (1956) Jurassic geology of the world. Oliver and Boyd, EdinburghGoogle Scholar
  7. Aubrecht R, Krobicki M, Sýkora M, Mišík M, Boorová D, Schlögl J, Šamajová E, Golonka J (2006) Early Cretaceous hiatus in the Czorsztyn Succession (Pieniny Klippen Belt, Western Carpathians): submarineerosion or emersion? Ann Soc Geol Polon 76:161–196Google Scholar
  8. Aurell M, Fernandez-Lopez S, Melendez G (1994) The Middle-Upper Jurassic oolitic ironstone level in the Iberian range (Spain). Eustatic implications. Geobios 17:549–561Google Scholar
  9. Bartolini A, Cecca F (1999) 20 My hiatus in the Jurassic of Umbria-Marche Apennines (Italy): carbonate crisis due to eutrophication. Compt Rend Acad Sci Paris Earth Planet Sci 329:587–595Google Scholar
  10. Bernoulli D, Jenkyns HC (1974) Alpine, Mediterranean and Central Antlantic Mesozoic facies in relation to the early evolution of the Tethys. In: Dott RHjr, Shaver RH (eds) Modern and ancient geosynclinal sedimentation. Soc Econ Paleont Miner Spec Publ 19:129–160Google Scholar
  11. Bleahu M, Bordea S, Panin S, Ştefănescu M, Sikić K, Haas J, Kovács S, Péró Cs, Bérczi-Makk A, Konrád Gy, Nagy E, Rálisch-Felgenhauer E, Török Á (1994) Triassic facies types, evolution and paleogeographic relations of the Tisza Megaunit. Acta Geol Hung 37:187–234Google Scholar
  12. Böhm F, Brachert TC (1993) Deep-water stromatolites and Frutexites Maslov from the Early and Middle Jurassic of S-Germany and Austria. Facies 28:145–168Google Scholar
  13. Bose PK, Eriksson PG, Sarkar S, Wright DT, Samanta P, Mukhopadhyay S, Mandal S, Banerjee S, Altermann W (2010) Sedimentation patterns during the Precambrian: a unique record? Mar Petrol Geol, doi: 10.1016/j.marpetgeo.2010.11.002
  14. Brachert TC (1999) Non-skeletal carbonate production and stromatolite growth within a Pleistocene deep ocean (Last Glacial Maximum, Red Sea). Facies 40:211–228Google Scholar
  15. Brigaud B, Durlet Ch, Deconinck J-F, Vincent B, Pucéat E, Thierry J, Trouiller A (2009) Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France). Sediment Geol 222:181–206Google Scholar
  16. Bromley RG (1975) Trace fossils at omission surfaces. In: Frey RW (ed) The study of trace fossils. Springer, New York, pp 399–428Google Scholar
  17. Cogné J-P, Humler E (2004) Temporal variation of oceanic spreading and crustal production rates during the last 180 My. Earth Planet Sci Lett 227:427–439Google Scholar
  18. Collin P-Y, Courville P, Loreau J-P, Marchand D, Thierry J (1999) Condensed series and biostratigraphic unit preservation index: example of the flooding of the North Burgundy platform (France) in Callovian-Oxfordian times. Compt Rend Acad Sci Paris 328:105–111Google Scholar
  19. Conti MA, Monari S (1992) Thin-shelled bivalves from the Jurassic Rosso Ammonitico and Calcari a Posidonia formations of the Umbrian-Marchean Apennine (Central Italy). Palaeopelagos 2:193–213Google Scholar
  20. Császár G (2002) Urgon formations in Hungary. Geol Hung Ser Geol 25:1–209Google Scholar
  21. Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56Google Scholar
  22. Csontos L, Benkovics L, Bergerat F, Mansy J-L, Wórum G (2002) Tertiary deformation history from seismic section study and fault analysis in a former European Tethyan margin (the Mecsek–Villány area, SW Hungary). Tectonophysics 357:81–102Google Scholar
  23. Dercourt J, Zonenshain LP et al (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophys 123:241–315Google Scholar
  24. Di Stefano P, Galácz A, Mallarino G, Mindszenty A, Vörös A (2002) Birth and early evolution of a Jurassic escarpment: Monte Kumeta, Western Sicily. Facies 46:273–298Google Scholar
  25. Dromart G, Garcia J-P, Atrops F, Lécuyer C, Sheppard SMF (2003a) Ice age at the Middle–Late Jurassic transition? Earth Planet Sci Lett 213:205–220Google Scholar
  26. Dromart G, Garcia J-P, Gaumet F, Picard S, Rousseau M, Atrops F, Lécuyer C, Sheppard SMF (2003b) Perturbation of the carbon cycle at the Middle/Late Jurassic transition: Geological and geochemical evidence. Am J Sci 303:667–707Google Scholar
  27. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162Google Scholar
  28. Enay R (1997) Le Jurassique Supérieur. In: Cariou E, Hantzpergue P (eds) Biostratigraphie du Jurassique ouest-européen et méditerranéen: zonations paralleles et distribution des invertebrés et microfossiles. Bull Centr Rech Elf Explor Prod Mém 17:363–369Google Scholar
  29. Etter W (1996) Pseudoplanktonic and benthic invertebrates in the Middle Jurassic Opalinum Clay, northern Switzerland. Palaeogeogr Palaeoclimatol Palaeoecol 126:325–341Google Scholar
  30. Föllmi KB, Gainon F (2008) Demise of the northern Tethyan Urgonian carbonate platform and subsequent transition towards pelagic conditions: the sedimentary record of the Col de la Plaine Morte area, central Switzerland. Sediment Geol 205:142–159Google Scholar
  31. Fürsich F (1971) Hartgründe und Kondensation im Dogger von Calvados. N J Geol Paläont Abh 138:313–342Google Scholar
  32. Fürsich FT (1979) Genesis, environment and ecology of Jurassic hardgrounds. N Jb Geol Paläont Abh 158:1–63Google Scholar
  33. Fürsich FT, Oschmann W, Jaitly AK, Singh IB (1991) Faunal response to transgressive–regressive cycles: example from the Jurassic of western India. Palaeogeogr Palaeoclimatol Palaeoecol 85:149–159Google Scholar
  34. Fürsich FT, Oschmann W, Singh IB, Jaitly AK (1992) Hardgrounds, reworked concretion levels and condensed horizons in the Jurassic of Western India. J Geol Soc Lond 149:313–331Google Scholar
  35. Galácz A (2001) Stromatolitic ammonite banks in the Jurassic of the Carpathian-Pannonian region. International conference on paleobiogeography and paleoecology. Piacenza & Castell’ Arquato. Abstracts, p 62Google Scholar
  36. Galácz A (2007) Siklós (Máriagyűd), Rózsabánya. In: Pálfy J, Pazonyi P (eds) Őslénytani kirándulások Magyarországon és Erdélyben [Palaeontological excursions in Hungary and Transylvania]. Hantken Kiadó, Budapest, pp 160–162Google Scholar
  37. Galácz A, Vörös A (1969) Belemnite fauna of the ammonite-rich Callovian bed at Villány, South Hungary. Ann Univ Sci Budapest Sect Geol 12(1968):117–139Google Scholar
  38. Gatrall M, Jenkyns HC, Parsons CF (1972) Limonitic concretions from the European Jurassic, with particular reference to the `Snuff-Boxes’ of southern England. Sedimentology 18:79–103Google Scholar
  39. Géczy B (1960) Die zeitliche Verbreitung von Paleotrix in den jurassischen Schichten des nördlichen Bakonygebirges. Ann Univ Sci Budapest Sect Geol 3(1959):49–53Google Scholar
  40. Géczy B (1971) L’âge du banc à ammonites de Villány. Ann Inst Geol Publ Hung 54:465–469Google Scholar
  41. Géczy B (1982) A villányi jura ammoniteszek (Les Ammonites jurassiques de Villány). Földt Közl 112:363–371 (with French abstract)Google Scholar
  42. Géczy B (1984) The Jurassic ammonites of Villány. Ann Univ Sci Budapest Sect Geol 24(1982):189–198Google Scholar
  43. Géczy B (1998) Lower Pliensbachian ammonites of Villány (Hungary). Hantkeniana 2:5–47Google Scholar
  44. Géczy B, Galácz A (1998) Bathonian ammonites from the classic Middle Jurassic locality of Villány, South Hungary. Rev Paléobiol 17:479–511Google Scholar
  45. Głowniak E, Wierzbowski A (2007) Taxonomical revision of the perisphinctid ammonites of the Upper Jurassic described by Józef Siemiradzki (1891) from the Kraków Upland. Vol Jurass 5:28–137Google Scholar
  46. Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273Google Scholar
  47. Golonka J, Krobicki M (2004) Jurassic paleogeography of the Pieniny and Outer Carpathian basins. Riv Ital Paleontol Stratigr 110:5–14Google Scholar
  48. Görög Á (1994) Early Jurassic planktonic foraminifera from Hungary. Micropaleontology 40:255–260Google Scholar
  49. Gradstein FJ, Ogg J, Smith A (2004) A geological time scale. Cambridge University Press, CambridgeGoogle Scholar
  50. Gradziński M, Tyszka J, Uchman A, Jach R (2004) Large microbial-foraminiferal oncoids from condensed Lower–Middle Jurassic deposits: a case study from the Tatra Mountains, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 213:133–151Google Scholar
  51. Gygi RA (1981) Oolitic iron formations: marine or not marine? Eclogae Geol Helv 74:233–254Google Scholar
  52. Gygi RA (2001) Perisphinctacean ammonites of the type Transversarium Zone (Middle Oxfordian, Late Jurassic) in northern Switzerland. Schweiz paläontol Abh 122:1–171Google Scholar
  53. Haas J (ed) (2001) Geology of Hungary. Eötvös University Press, BudapestGoogle Scholar
  54. Haas J, Péró CS (2004) Mesozoic evolution of the Tisza Mega-unit. Int J Earth Sci 93:297–313Google Scholar
  55. Haas J, Kovács S, Török Á (1995) Early Alpine shelf evolution in the Hungarian segments of the Tethys margin. Acta Geol Hung 38:95–110Google Scholar
  56. Hallam A (1988) A re-evaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. In: Wilgus CK, Hastings BS, Ross CA, Posamentier H, Van Wagoner J, Kendall CGSC (eds) Sea-level changes; an integrated approach. SEPM Spec Publ 42:61–273Google Scholar
  57. Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeoclimatol Palaeoecol 167:23–37Google Scholar
  58. Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, Ross CA, Posamentier H, Van Wagoner J, Kendall CGSC (eds) Sea-level changes; an integrated approach. SEPM Spec Publ 42:72–108Google Scholar
  59. Hoffmann K (1876) Mittheilungen der Geologen der k. ungar. geologischen Anstalt über ihre Aufnahmsarbeiten in den Jahren 1874. Verh k k geol Reichsanst 22–24Google Scholar
  60. Hotinski RM, Toggweiler JR (2003) Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography 18:1007. doi: 10.1029/2001PA000730 Google Scholar
  61. Iturralde-Vinent MA (2003) The conflicting paleontologic versus stratigraphic records of the formation of the Caribbean Seaway. In: Bartolini C, Buffler RT, Blickwede J (eds) The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation and plate tectonics. AAPG Mem 79:75–88Google Scholar
  62. Jach R (2007) Bositra limestones–a step towards radiolarites: case study from the Tatra Mountains. Ann Soc Geol Polon 77:161–170Google Scholar
  63. Jenkyns HC (1972) Pelagic “oolites” from the Tethyan Jurassic. J Geol 80:21–33Google Scholar
  64. Jenkyns HC (1980) Tethys: past and present. Proc Geol Assoc 91:107–118Google Scholar
  65. Kaszap A (1958) Dogger rétegek újabb feltárása a Villányi hegységben (Ein neueres Vorkommen von Doggerschichten im Villányer Gebirge). Földt Közl 88:119–121Google Scholar
  66. Kaszap A (1959) Dogger rétegek a Villányi-hegységben (Doggerschichten im Villányer Gebirge [Südungarn]). Földt Közl 89:262–269Google Scholar
  67. Kaszap A (1963) Investigations on the microfacies of the Malm beds of the Villány Mountains. Ann Univ Sci Budapest Sect Geol 6:47–57Google Scholar
  68. Kauffman EG (1981) Ecological reappraisal of the German Posidonienschiefer (Toarcian) and the stagnant basin model. In: Gray J, Boucot AJ, Berry WBN (eds) Communities of the past. Hutchinson Ross, Stroudsburg, pp 311–381Google Scholar
  69. Kondo Y (1987) Burrowing depth of infaunal bivalves–observation of living species and its relation to shell morphology. Trans Palaeont Soc Jpn NS 148:306–323Google Scholar
  70. Kopik J (1979) Callovian of the Czestochowa Jura (south-western Poland). Pr Inst Geol 93:5–69Google Scholar
  71. Kovács S, Szederkényi T, Haas J, Buda Gy, Császár G, Nagymarosy A (2000) Tectonostratigraphic terranes in the pre-Neogene basement of the Hungarian part of the Pannonian area. Acta Geol Hung 43:225–328Google Scholar
  72. Lazo DG (2007) The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: taxonomy, taphonomy, and paleogeographic implications. Acta Palaeontol Pol 52:375–390Google Scholar
  73. Lenz O (1872) Aus dem Baranyer Comitat. Verh k k geol Reichsanst 1872:290–294Google Scholar
  74. Lewandowski M, Krobicki M, Matyja BA, Wierzbowski A (2005) Palaeogeographic evolution of the Pieniny Klippen Basin using stratigraphic and palaeomagnetic data from the Veliky Kamenets section (Carpathians, Ukraine). Palaeogeogr Palaeoclimatol Palaeoecol 216:53–72Google Scholar
  75. Lóczy L (1915) Monographie der Villányer Callovien-Ammoniten. Geol Hung 1:255–502Google Scholar
  76. Louis-Schmid B, Rais P, Bernasconi SM, Pellenard P, Collin P-Y, Weissert H (2007) Detailed record of the mid-Oxfordian (Late Jurassic) positive carbon-isotope excursion in two hemipelagic sections (France and Switzerland): a plate tectonic trigger? Palaeogeogr Palaeoclimatol Palaeoecol 248:459–472Google Scholar
  77. Luczyński P (2002) Depositional evolution of the Middle Jurassic carbonate sediments in the high-tatric succession, Tatra Mountains, Western Carpathians, Poland. Acta Geol Pol 52:365–378Google Scholar
  78. Mangold C (1997) Le Jurassique Moyen. In: Cariou E, Hantzpergue P (eds) Biostratigraphie du Jurassique ouest-européen et méditerranéen: zonations paralleles et distribution des invertebrés et microfossiles. Bull Centr Rech Elf Explor Prod Mém 17:355–362Google Scholar
  79. Matyja BA (2009) Development of the Mid-Polish trough versus Late Jurassic evolution in the Carpathian Foredeep area. Geol Q 53:49–62Google Scholar
  80. Matyja BA, Wierzbowski A (2006) The oceanic “Metis Geotectonic Event” (Callovian/Oxfordian) and its implications for the peri-Tethyan area of Poland. Vol Jurass 4:60–61Google Scholar
  81. Mišík M (1994) The Czorsztyn submarine ridge (Jurassic-Lower Cretaceous, Pieniny Klippen Belt): an example of a pelagic swell. Mitt Österr Geol Ges 86:133–140Google Scholar
  82. Molina JM, Ruiz-Ortiz PA, Vera JA (1999) A review of polyphase karstification in extensional tectonic regimes: Jurassic and Cretaceous examples, Betic Cordillera, southern Spain. Sediment Geol 129:71–84Google Scholar
  83. Nagy I (1971) A Paleotrix kérdés. A fonalasalgák rétegtani szerepe a mecseki felsőjurában (Le problème de Paléotrix. Le rôle des algues filiformes dans le Jurassique supérieur de la Montagne de Mecsek). Rel Ann Inst Geol Publ Hung 1969:299–316Google Scholar
  84. Norris MS, Hallam A (1995) Facies variations across the Middle-Upper Jurassic boundary in Western Europe and the relationship to sea-level changes. Palaeogeogr Palaeoclimatol Palaeoecol 116:189–245Google Scholar
  85. Olivier N, Pittet B, Mattioli E (2004) Palaeoenvironmental control on sponge-microbialite reefs and contemporaneous deep-shelf marl-limestone deposition (Late Oxfordian, southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 212:233–263Google Scholar
  86. Padden M, Weissert H, de Rafelis M (2001) Evidence for Late Jurassic release of methane from gas hydrate. Geology 29(3):223–226Google Scholar
  87. Pálfy M (1901) Geologiai jegyzetek néhány dunamenti kőbányáról [Geological notes on some quarries along the Danube]. Földt Közl 31:150–155Google Scholar
  88. Palmer TJ, Wilson MA (1990) Growth of ferruginous oncoliths in the Bajocian (Middle Jurassic) of Europe. Terra Nova 2:142–147Google Scholar
  89. Plasienka D (2003) Dynamics of Mesozoic pre-orogenic rifting in the Western Carpathians. Mitt Österr Geol Ges 94:79–98Google Scholar
  90. Préat A, Mamet B, De Ridder C, Boulvain F, Gillan D (2000) Iron bacterial and fungal mats, Bajocian stratotype (Mid-Jurassic, northern Normandy, France). Sediment Geol 137:107–126Google Scholar
  91. Radwański A, Szulczewski A (1966) Jurassic stromatolites of the Villány Mountains (Southern Hungary). Ann Univ Sci Budapest Sect Geol 9(1965):87–107Google Scholar
  92. Rais P, Louis-Schmid B, Bernasconi SM, Weissert H (2007) Palaeoceanographic and palaeoclimatic reorganization around the Middle–Late Jurassic transition. Palaeogeogr Palaeoclimatol Palaeoecol 251:527–546Google Scholar
  93. Reid RP, Macintyre IG, Steneck RS, Browne KM, Miller TE (1995) Stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33:1–18Google Scholar
  94. Reolid M, Gaillard C, Olóriz F, Rodríguez-Tovar FJ (2005) Microbial encrustations from the Middle Oxfordian-earliest Kimmeridgian lithofacies in the Prebetic Zone (Betic Cordillera, southern Spain): characterization, distribution and controlling factors. Facies 50:529–543Google Scholar
  95. Reolid M, Abad I, Martín-García JM (2008) Palaeoenvironmental implications of ferruginous deposits related to a Middle–Upper Jurassic discontinuity (Prebetic Zone, Betic Cordillera, Southern Spain). Sediment Geol 203:1–16Google Scholar
  96. Reolid M, Nieto LM, Rey J (2010) Taphonomy of cephalopod assemblages from Middle Jurassic hardgrounds of pelagic swells (South-Iberian Palaeomargin Western Tethys). Palaeogeogr Palaeoclimatol Palaeoecol 292:257–271Google Scholar
  97. Riding R (2006) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238Google Scholar
  98. Röhl H-J, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52Google Scholar
  99. Schlögl J, Mangold C, Tomašových A, Golej M (2009) Early and Middle Callovian ammonites from the Pieniny Klippen Belt (Western Carpathians) in hiatal successions: unique biostratigraphic evidence from sediment-filled fissure deposits. N Jb Geol Paläont Abh 252:55–79Google Scholar
  100. Schmid D, Leinfelder RR, Schweigert G (2005) Stratigraphy and palaeoenvironments of the Upper Jurassic of Southern Germany. Zitteliana (B) 26:31–41Google Scholar
  101. Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183Google Scholar
  102. Seilacher A (1980) Ammonite shells as habitats in the Posidonia Shales of Holzmaden—floats or benthic islands? N Jb Geol Paläont Abh 159:99–115Google Scholar
  103. Sidorczuk M, Nejbert K (2009) Genesis of ferromanganese crusts in Jurassic pelagic limestones at Stankowa Skała, Pieniny Klippen Belt, Poland: sedimentological and petrological approach. Vol Jurass 6:75–85Google Scholar
  104. Smith P, Tipper HW (1986) Plate tectonics and paleobiogeography: early Jurassic (Pliensbachian) endemism and diversity. Palaios 5:399–412Google Scholar
  105. Stampfli G, Borel G (2002) A plate-tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33Google Scholar
  106. Sturesson U, Heikoop JM, Risk MJ (2000) Modern and Palaeozoic iron ooids—a similar volcanic origin. Sediment Geol 136:137–146Google Scholar
  107. Szente I, Vörös A (1992) A Pliensbachian (Early Jurassic) bivalve faunula from the Harsány-hegy: first record of the Domerian substage from the Villány Hills (Southern Hungary). Fragm Mineral Palaeont 15:95–104Google Scholar
  108. Szulczewski M (1968) Stromatolity jurajskie w Polsce (Jurassic stromatolites of Poland). Acta Geol Pol 18:1–99Google Scholar
  109. Thierry J, Cariou, E, Elmi S, Mangold C, Marchand D, Rioult M (1997) Callovien. In: Cariou E, Hantzpergue P (eds) Biostratigraphie du Jurassique ouest-européen et méditerranéen: zonations paralleles et distribution des invertebrés et microfossiles. Bull Centr Rech Elf Explor Prod Mém 17:63–78Google Scholar
  110. Till A (1906) Der fossilführende Dogger von Villány (Südungarn). Verh k k geol Reichsanst 1906:365–368Google Scholar
  111. Till A (1907) Zur Ammonitenfauna von Villány (Südungarn). Verh k k geol Reichsanst 1907:121–129Google Scholar
  112. Till A (1910–1911) Die Ammonitenfauna des Kelloway von Villány (Ungarn). Beitr Paläont Geol Österr–Ung Orient 23:175–199, 251–272 (1910); 24:1–49 (1911)Google Scholar
  113. Tremolada F, Erba E, van de Schootbrugge B, Mattioli E (2006) Calcareous nannofossil changes during the late Callovian–early Oxfordian cooling phase. Mar Micropaleontol 59:197–209Google Scholar
  114. Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100Google Scholar
  115. Vörös A (1971) Lower and Middle Jurassic bivalves of the Villány Mountains. Ann Univ Sci Budapest Sect Geol 14:167–208Google Scholar
  116. Vörös A (1972) A Villányi hegység alsó és középső júra képződményeinek üledékföldtani vizsgálata (Lower and Middle Jurassic formations of the Villány Mountains). Földt Közl 102:12–28 (with English abstract)Google Scholar
  117. Vörös A (1986) Brachiopod paleoecology on a Tethyan Jurassic seamount (Pliensbachian, Bakony Mts., Hungary). Palaeogeogr Palaeoclimatol Palaeoecol 57:241–271Google Scholar
  118. Vörös A (1993) Jurassic microplate movements and brachiopod migrations in the western part of the Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 100:125–145Google Scholar
  119. Vörös A (2004) Bathonian brachiopods from Villány (South Hungary). Fragm Palaeont Hung 22:1–8Google Scholar
  120. Vörös A (2005) The smooth brachiopods of the Mediterranean Jurassic: refugees or invaders? Palaeogeogr Palaeoclimatol Palaeoecol 223:222–242Google Scholar
  121. Vörös A (2006) Facies analysis and structural evolution. Tisza terrane. In: Horváth F, Galácz A (eds) The Carpathian-Pannonian region. A review of Mesozoic-Cenozoic stratigraphy and tectonics. Geol Pannon Spec Publ 1:425–431Google Scholar
  122. Vörös A (2010a) A villányi mezozoos rétegsor: visszatekintés új nézőpontból (The Mesozoic sedimentary sequences at Villány [southern Hungary]). Földt Közl 140:3–30Google Scholar
  123. Vörös A (2010b) Tectonically-controlled Late Triassic and Jurassic sedimentary cycles on a peri-Tethyan ridge (Villány, southern Hungary). Cent Eur Geol 52(2009):125–151Google Scholar
  124. Vörös A, Csontos L (2006) Mesozoic stratigraphy of the Tisza terrane. In: Horváth F, Galácz A (eds) The Carpathian-Pannonian region. A review of Mesozoic-Cenozoic stratigraphy and tectonics. Geol Pannon Spec Publ 1:84–118Google Scholar
  125. Westermann GEG (1993) Global bio-events in mid-Jurassic ammonites controlled by seaways. In: House MR (ed) The Ammonoidea: environment, ecology and evolutionary change. Syst Assoc Spec Vol 47:187–226Google Scholar
  126. Whalen MT, Day J, Eberli GP, Homewood PW (2002) Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta basin, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 181:127–151Google Scholar
  127. Wierzbowski A, Jaworska M, Krobicki M (1999) Jurassic (Upper Bajocian–lowest Oxfordian) ammonitico rosso facies in the Pieniny Klippen Belt, Carpathians, Poland: its fauna, age, microfacies and sedimentary environment. Stud Geol Polon 115:7–74Google Scholar
  128. Wierzbowski H, Dembicz K, Praszkier T (2009) Oxygen and carbon isotope composition of Callovian-Lower Oxfordian (Middle–Upper Jurassic) belemnite rostra from central Poland: a record of a Late Callovian global sea-level rise? Palaeogeogr Palaeoclimatol Palaeoecol 283:182–194Google Scholar
  129. Ziegler P (1988) Evolution of the Arctic–North Atlantic and the Western Tethys. Am Assoc Petrol Geol, Mem 43, Tulsa, Oklahoma, 198 pGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Research Group for PaleontologyHungarian Academy of Sciences–Hungarian Natural History MuseumBudapest, Ludovika tér 2Hungary

Personalised recommendations