, Volume 57, Issue 2, pp 275–300 | Cite as

Origin and paleoecology of Middle Jurassic hiatus concretions from Poland

  • Michał ZatońEmail author
  • Sylwia Machocka
  • Mark A. Wilson
  • Leszek Marynowski
  • Paul D. Taylor
Original Article


Bored and encrusted carbonate concretions, termed hiatus concretions, coming from the Middle Jurassic (Upper Bajocian and Bathonian) siliciclastics of the Polish Jura, south-central Poland, have been subjected to detailed paleoecological investigation for the first time. The concretions possess variable morphology and bear distinct traces of bioerosion and encrustation as a result of exhumation on the sea floor during intervals of low sedimentation and/or erosion. The borings are dominated by Gastrochaenolites and Entobia. Epilithozoans, represented by at least 26 taxa, are dominated by sabellid/serpulid worm tubes and bryozoans, while sponges and corals are minor. No relationship between the concretion size and the number of encrusters has been found, suggesting that concretion size was not the primary factor controlling diversity. Stable isotope analyses and the presence of crustacean scratch marks and Rhizocorallium traces on many of the hiatus concretions indicate that they formed just below the sediment–water interface, within the sulfate reduction zone. Moreover, crustacean activities may have been a prelude to their origin, as shapes of many concretions closely resemble thalassinoidean burrow systems. It is also possible that crustacean activity around the concretions promoted their exhumation by loosening the surrounding soft sediment. The presence of borings and encrusters on different concretion surfaces, as well as truncated borings and a number of abraded epilithozoans, indicate that after the concretions were exhumed they were repeatedly overturned and moved on the sea floor, probably due to episodic storm-related bottom currents in shallow subtidal environment.


Concretions Encrusters Borers Disturbance Jurassic Poland 



Michał Zatoń would like to thank the Paleontological Society for the PalSIRP Sepkoski Grant 2005 that enabled to start this project. This work has also been supported by the MNISW grant: N N307 2379 33 (for Leszek Marynowski). Mark A. Wilson thanks the Luce Fund at The College of Wooster for partial support of this research. David Rodland and Chris Schneider are greatly acknowledged for their constructive comments and many useful remarks that improved the manuscript. Stanisław and Rafał Zatoń, Tomasz Borszcz, and Tomasz Krzykawski are thanked for their help and logistic support during our field works. The article benefited from the reviews of Matías Reolid and Olev Vinn, whose useful remarks and constructive comments greatly improved its final version. André Freiwald, the journal editor, is thanked for final editing of the manuscript.


  1. Allison PA, Pye K (1994) Early diagenetic mineralization and fossil preservation in modern carbonate concretions. Palaios 9:561–575CrossRefGoogle Scholar
  2. Asgaard U, Bromley RG, Hanken N-M (1997) Recent firmground burrows produced by a upogebiid crustacean: palaeontological implications. Cour Forsch-Instit Senck 201:23–28Google Scholar
  3. Babić L, Zupanič J (2000) Borings in mobile clasts from Eocene conglomerates of northern Dalmatia (coastal Dinarides, Croatia). Facies 42:51–58CrossRefGoogle Scholar
  4. Bäckström SA, Nagy J (1985) Depositional history and fauna of a Jurassic phosphorite conglomerate (the Brentskardhaugen Bed) in Spitsbergen. Norsk Polarinst Skrifter 183:1–61Google Scholar
  5. Baird GC (1976) Coral encrusted concretions: a key to recognition of a ‘shale on shale’ erosion surface. Lethaia 9:293–302CrossRefGoogle Scholar
  6. Baird GC (1981) Submarine erosion on a gentle paleoslope: a study of two discontinuities in the New York Devonian. Lethaia 14:105–122CrossRefGoogle Scholar
  7. Baird GC, Fürsich FT (1975) Taphonomy and biologic progression associated with submarine erosion surfaces from the German Lias. N Jahrb Geol Pal Mon 6:321–338Google Scholar
  8. Barnes DK, Kuklinski P (2003) High polar spatial competition: extreme hierarchies at extreme latitude. Mar Ecol Prog Ser 259:17–28CrossRefGoogle Scholar
  9. Barski M, Dembicz K, Praszkier T (2004) Biostratygrafia i paleośrodowisko środkowej jury z kamieniołomu Ogrodzieniec. Tomy Juraj 2:61–68Google Scholar
  10. Berner RA (1968) Calcium carbonates concretions formed by the decomposition of organic matter. Science 159:195–197CrossRefGoogle Scholar
  11. Bromley RG (1970) Borings as trace fossils and Entobia cretacea Portlock, as an example. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3:49–90Google Scholar
  12. Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The palaeobiology of trace fossils. Wiley, New York, pp 134–154Google Scholar
  13. Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analyses. Geol Soc Lond Spec Publ 228:455–479Google Scholar
  14. Bromley RG, Asgaard U (1993) Two bioerosion ichnofacies produced by early and late burial associated with sea-level change. Geol Rundsch 82:276–280CrossRefGoogle Scholar
  15. Brown BJ, Farrow GE (1978) Recent dolomitic concretions of crustacean burrow origin from Loch Sunart, west coast of Scotland. J Sediment Res 48:825–833Google Scholar
  16. Chudzikiewicz L, Wieczorek J (1985) Bored and encrusted clasts in the Lower Kimmeridgian carbonates at Sobków (SW margin of the Holy Cross Mts., Poland). Ann Soc Geol Polon 55:295–306Google Scholar
  17. Cole AR, Palmer TJ (1999) Middle Jurassic worm borings, and a new giant ichnospecies of Trypanites from the Bajocian/Dinantian unconformity, southern England. Proc Geol Assoc 110:203–209CrossRefGoogle Scholar
  18. Dadlez R (1989) Epikontynentalne baseny permu i mezozoiku w Polsce. Kwart Geol 33:175–198Google Scholar
  19. Dayczak-Calikowska K, Kopik J, Marcinkiewicz T (1997) Middle Jurassic. In: Marek S, Pajchlowa M (eds) Epikontynentalny perm i mezozoik w Polsce. Pr Państ Inst Geol 153:236–282Google Scholar
  20. Feldman-Olszewska A (1997) Depositional architecture of the polish epicontinental Middle Jurassic basin. Geol Q 41:491–508Google Scholar
  21. Frey RW, Pemberton SG, Saunders TDA (1990) Ichnofacies and bathymetry: a passive relationship. J Paleontol 64:155–158Google Scholar
  22. Fürsich FT (1979) Genesis, environments, and ecology of Jurassic hardgrounds. N Jahrb Geol Pal Abh 158:1–63Google Scholar
  23. Fürsich FT, Oschmann W, Singh IB, Jaitly AK (1992) Hardgrounds, reworked concretion levels and condensed horizons in the Jurassic of western India: their significance for basin analysis. J Geol Soc Lond 149:313–331CrossRefGoogle Scholar
  24. Fürsich FT, Palmer TJ, Goodyear KL (1994) Growth and disintegration of bivalve-dominated patch reefs in the Upper Jurassic of southern England. Palaeontology 37:131–171Google Scholar
  25. Garrison RE, Föllmi KM, Friede KM, Kastner M, Ramirez PC (1988) Phosphatic hardgrounds and hiatus concretions in Neogene marine sequences of California coastal ranges. Am Assoc Petrol Geol Bull 72:381Google Scholar
  26. Gingras MK, Pemberton SG, Saunders T (2001) Bathymetry, sediment texture, and substrate cohesiveness; their impact on modern Glossifungites trace assemblages at Willapa Bay, Washington. Palaeogeogr Palaeoclimatol Palaeoecol 169:1–21CrossRefGoogle Scholar
  27. Gradziński M, Tyszka J, Uchman A, Jach R (2004) Large microbial-foraminiferal oncoids from condensed Lower-Middle Jurassic deposits: a case study from the Tatra Mountains, Poland. Palaeogeog Palaeoclim Palaeoecol 213:133–151Google Scholar
  28. Greene CH, Schoener A (1982) Succession on marine hard substrata: a fixed lottery. Oecologia 55:289–297CrossRefGoogle Scholar
  29. Greene CH, Schoener A, Corets E (1983) Succession on marine hard substrata: the adaptive significance of solitary and colonial strategies in temperate fouling communities. Mar Ecol Prog Ser 13:121–129CrossRefGoogle Scholar
  30. Hallam A (1969) A pyritized limestone hardground in the Lower Jurassic of Dorset (England). Sedimentology 12:231–240CrossRefGoogle Scholar
  31. Hesselbo SP, Palmer TJ (1992) Reworked early diagenetic concretions and the bioerosional origin of a regional discontinuity within British Jurassic marine mudstones. Sedimentology 39:1045–1065CrossRefGoogle Scholar
  32. Hoffmann M, Krobicki M (1989) Oyster buildup within the dysaerobic-facies mudstones (Middle Jurassic, Central Poland)—example of benthic island colonization. Ann Soc Geol Polon 59:299–330Google Scholar
  33. Illies G (1971) Drei Arten der Gattung Stomatopora [Bryoz. Cycl] aus dem mittleren Lias bei Goslar und deren verschiedene Knospungsmuster. Oberrheinisch Geol Abh 20:125–146Google Scholar
  34. Illies G (1973) Different budding patterns in the genus Stomatopora (Bryozoa, Cyclostomata). In: Larwood GP (ed) Living and fossil Bryozoa. Academic Press, London, pp 307–315Google Scholar
  35. Ippolitov AP (2007a) Contribution to the revision of some Late Callovian serpulids (Annelida, Polychaetes) of central Russia: part 2. Paleontol J 41:429–436CrossRefGoogle Scholar
  36. Ippolitov AP (2007b) Contribution to the revision of some Late Callovian serpulids (Annelida, Polychaetes) of central Russia: part 1. Paleontol J 41:260–267CrossRefGoogle Scholar
  37. Jackson JBC (1977) Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat 111:743–767CrossRefGoogle Scholar
  38. Kaim A (2004) The evolution of conch ontogeny in Mesozoic open marine gastropods. Palaeontol Polon 62:1–183Google Scholar
  39. Kaim A (2008) A review of gastropods from a Callovian (Middle Jurassic) glacial drift at Łuków, Eastern Poland. N Jahrb Geol Pal Abh 247:161–176CrossRefGoogle Scholar
  40. Kaźmierczak J (1974) Crustacean associated hiatus concretions and eogenetic cementation in the Upper Jurassic of central Poland. N Jahrb Geol Pal Abh 147:329–342Google Scholar
  41. Kelly SRA (1980) Hiatella—a Jurassic bivalve squatter? Palaeontology 23:769–781Google Scholar
  42. Kelly SRA, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807Google Scholar
  43. Kennedy WJ, Klinger HC (1972) Hiatus concretions and hardground horizons in the Cretaceous of Zululand (South Africa). Palaeontology 15:539–549Google Scholar
  44. Kennedy WJ, Lindholm RC, Helmold KP, Hancock JM (1977) Genesis and diagenesis of hiatus- and breccia-concretions from the mid-Cretaceous of Texas and northern Mexico. Sedimentology 24:833–844CrossRefGoogle Scholar
  45. Kiel S, Peckmann J (2007) Chemosymbiotic bivalves and stable carbon isotopes indicate hudrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia 40:345–357Google Scholar
  46. Kopik J (1998) Jura dolna i środkowa północno-wschodniego obrzeżenia Górnosląskiego Zagłębia Węglowego. Biul Państw Inst Geol 378:67–120Google Scholar
  47. Kuklinski P (2009) Ecology of stone-encrusting organisms in the Greenland Sea—a review. Polar Res 28:222–237CrossRefGoogle Scholar
  48. Kuklinski P, Bader B (2007) Diversity, structure and interactions of encrusting lithophyllic macrofaunal assemblages from Belgica Bank, East Greenland. Polar Biol 30:709–717CrossRefGoogle Scholar
  49. Majewski W (2000) Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geol Polon 50:431–439Google Scholar
  50. Mangold C, Rioult M (1997) Bathonien. In: Cariou E, Hantzpergue P (eds) Biostratigraphie du Jurassiques ouest-européen et méditerranéen. Bull Cent Rech Elf Explor Prod Mém 17:55–62Google Scholar
  51. Marshall-Neill G, Ruffell A (2004) Authigenic phosphate nodules (Late Cretaceous, northern Ireland) as condensed succession microarchives. Cret Res 25:439–452CrossRefGoogle Scholar
  52. Marynowski L, Zatoń M, Simoneit BRT et al (2007) Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Appl Geochem 22:2456–2485CrossRefGoogle Scholar
  53. Matyja BA, Wierzbowski A (2000) Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wieluń, Central Poland. Acta Geol Polon 50:191–209Google Scholar
  54. Matyja BA, Wierzbowski A, Gedl P et al (2006a) Stop B1.5—Sowa’s and Glinski’s clay pits (uppermost Bajocian-lowermost Bathonian). In: Wierzbowski A, Aubrecht R, Golonka J et al (eds) Jurassic of Poland and adjacent Slovakian Carpathians. Field trip guidebook of 7th international congress on the Jurassic System Poland, Kraków, September 6–18, 2006, pp 149–152Google Scholar
  55. Matyja BA, Wierzbowski A, Gedl P et al (2006b) Stop B1.6—Leszczyński’s clay pit (Lower Bathonian). In: Wierzbowski A, Aubrecht R, Golonka J et al (eds) Jurassic of Poland and adjacent Slovakian Carpathians. Field trip guidebook of 7th international congress on the Jurassic System Poland, Kraków, September 6–18, 2006, pp 152–154Google Scholar
  56. Matyja BA, Wierzbowski A, Gedl P et al (2006c) Stop B1.7—Gnaszyn clay pit (Middle Bathonian-lowermost Upper Bathonian). In: Wierzbowski A, Aubrecht R, Golonka J et al (eds) Jurassic of Poland and adjacent Slovakian Carpathians. Field trip guidebook of 7th international congress on the Jurassic System Poland, Kraków, September 6–18, 2006, pp 154–157Google Scholar
  57. Maughan BC, Barnes DKA (2000) Epilithic boulder communities of Lough Hyne, Ireland: the influences of water movement and sediment. J Marin Biol Assoc UK 80:767–776CrossRefGoogle Scholar
  58. Merta T, Drewniak A (1998) Lithology and depositional environment of the Bathonian clays. In: Poulsen NE, Bojesen-Koefoed J, Drewniak A et al (eds) Mellem-Øvre Jura i Polen. EEP-1995 projekt: Det polske Mellem-Øvre Epikratoniske Bassin, Stratigrafi, Facies og Bassin Historie. Program Østeuropa. Danm Grønl Geol Unders Rapport 1998/14, pp 25–41Google Scholar
  59. Navarro V, Reolid M, Molina JM, Ruiz-Ortiz PA (2008) Slope breccias colonized by bivalves and serpulids during the Middle Jurassic (Subbetic, SE Spain). Facies 54:403–415CrossRefGoogle Scholar
  60. Newell ND, Purdy EG, Imbrie J (1960) Bahamian oolitic sand. J Geol 68:481–497CrossRefGoogle Scholar
  61. Niebuhr B, Wilmsen M (2005) First record of the hydroid Protulophila gestroi Rovereto, 1901, a serpulid symbiont from the Middle Cenomanian primus Event, northern Germany. N Jahrb Geol Pal Monat 4:219–232Google Scholar
  62. Olóriz F, Reolid M, Rodríguez-Tovar FJ (2004) Microboring and taphonomy in Middle Oxfordian to lowermost Kimmeridgian (Upper Jurassic) from the Prebetic Zone (southern Iberia). Palaeogeogr Palaeoclimatol Palaeoecol 212:181–197Google Scholar
  63. Olszewska-Nejbert D (2007) Late Cretaceous (Turonian-Coniacian) irregular echinoids of western Kazakhstan (Mangyshlak) and southern Poland (Opole). Acta Geol Polon 57:1–87Google Scholar
  64. Osman RW (1977) The establishment and development of a marine epifaunal community. Ecol Monogr 47:37–63CrossRefGoogle Scholar
  65. Palmer TJ, Fürsich FT (1974) The ecology of a Middle Jurassic hardground and crevice fauna. Palaeontology 17:507–524Google Scholar
  66. Palmer TJ, Fürsich FT (1981) Ecology of sponge reefs from the Upper Bathonian of Normandy. Palaeontology 24:1–23Google Scholar
  67. Palmer TJ, Wilson MA (1988) Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31:939–949Google Scholar
  68. Palmer TJ, Wilson MA (1990) Growth of ferruginous oncoliths in the Bajocian (Middle Jurassic) of Europe. Terra Nova 2:142–147CrossRefGoogle Scholar
  69. Palmer TJ, Wilson MA (2004) Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia 37:417–427CrossRefGoogle Scholar
  70. Palmer TJ, Hudson JD, Wilson MA (1988) Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature 335:809–810CrossRefGoogle Scholar
  71. Pararas A, Casadío S (2006) The oyster Crassostrea? hatcheri (Ortmann, 1897), a physical ecosystem engineer from the Upper Oligocene–Lower Miocene of Patagonia, southern Argentina. Palaios 21:168–186CrossRefGoogle Scholar
  72. Pemberton SG, Kobluk DR, Yeo RK, Risk MJ (1980) The boring Trypanites at the Silurian-Devonian disconformity in southern Ontario. J Paleontol 54:1258–1266Google Scholar
  73. Perry CT (1996) Distribution and abundance of macroborers in an Upper Miocene reef system, Mallorca, Spain: implications for reef development and framework destruction. Palaios 11:40–56CrossRefGoogle Scholar
  74. Pisera A (1987) Boring and nestling organisms from Upper Jurassic coral colonies from northern Poland. Acta Palaeontol Polon 32:83–104Google Scholar
  75. Plint AG, Jin J, Varban BL, Rylaarsdam JR (2006) A high-latitude epilithozoan fauna on quartzite clasts and the problem of cobble transport across a coastal plain: Middle Turonian Kaskapu Formation, British Columbia, Canada. Palaios 21:557–570CrossRefGoogle Scholar
  76. Poulsen NS (1998) Upper Bajocian to Callovian (Jurassic) dinoflagellate cysts from central Poland. Acta Geol Polon 48:237–245Google Scholar
  77. Pugaczewska H (1970) Traces of the activity of bottom organisms on the shells of the Jurassic ostreiform pelecypods of Poland. Acta Palaeontol Polon 15:425–440Google Scholar
  78. Radwańska U (2004) Tube-dwelling polychaetes from the Upper Oxfordian of Wapienno/Bielawy, Couiavia region, north-central Poland. Acta Geol Polon 54:35–52Google Scholar
  79. Reolid M, Gaillard C (2007) Microtaphonomy of bioclasts and paleoecology of microencrusters from Upper Jurassic spongiolithic limestones (External Prebetic, southern Spain). Facies 53:97–112CrossRefGoogle Scholar
  80. Reolid M, Molina JM (2010) Serpulid-Frutexites assemblage from shadow-cryptic environments in Jurassic marine caves (Betic Cordillera, south Spain). Palaios 25:468–474CrossRefGoogle Scholar
  81. Reolid M, Gaillard C, Olóriz F, Rodríguez-Tovar FJ (2005) Microbial encrustations from the Middle Oxfordian–earliest Kimmeridgian lithofacies in the Prebetic Zone (Betic Cordillera, southern Spain): characterization, distribution and controlling factors. Facies 50:529–543CrossRefGoogle Scholar
  82. Reolid M, Nieto LM, Rey J (2010a) Taphonomy of cephalopod assemblages from Middle Jurassic hardgrounds of pelagic swells (South-Iberian Palaeomargin, Western Tethys). Palaeogeogr Palaeoclimatol Palaeoecol 292:257–271CrossRefGoogle Scholar
  83. Reolid M, Philippe M, Nagy J, Abad I (2010b) Preservation of phosphatic wood remains in marine deposits of the Brentskardhaugen Bed (Middle Jurassic) from Svalbard (Boreal Realm). Facies 56:549–566CrossRefGoogle Scholar
  84. Różycki SZ (1953) Górny dogger i dolny malm Jury Krakowsko-Częstochowskiej. Pr Inst Geol 17:1–420Google Scholar
  85. Savrda CE, Bottjer DJ (1988) Limestone concretion growth documented by trace-fossil relations. Geology 16:908–911CrossRefGoogle Scholar
  86. Schlagintweit F, Gawlick H-J (2009) Oncoid-dwelling foraminifera from Late Jurassic shallow-water carbonates of the Northern Calcareous Alps (Austria and Germany). Facies 55:259–266CrossRefGoogle Scholar
  87. Schlögl J, Michalík J, Zágoršek K, Atrops F (2008) Early Tithonian serpulid-dominated cavity-dwelling fauna, and the recruitment pattern of the serpulid larvae. J Paleontol 82:382–392CrossRefGoogle Scholar
  88. Scrutton CT (1975) Hydroid-serpulid symbiosis in the Mesozoic and Tertiary. Palaeontol 18:255–274Google Scholar
  89. Śnieżek P (1980) Węglanowe konkrecje ze skałotoczami z iłów rudonośnych batonu okolic Wielunia. Przeg Geol 28:463–465Google Scholar
  90. Sousa WP (1979) Disturbance in marine intertidal boulder fields: the nonequilibrium maintenance of species diversity. Ecology 60:1225–1239CrossRefGoogle Scholar
  91. Surlyk F, Christensen WK (1974) Epifaunal zonation on an Upper Cretaceous rocky coast. Geology 2:529–534CrossRefGoogle Scholar
  92. Szczepanik P, Witkowska M, Sawłowicz Z (2007) Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): interpretation of the depositional redox conditions. Geol Q 51:57–66Google Scholar
  93. Tapanila L (2006) Devonian Entobia borings from Nevada, with a revision of Topsentopsis. J Paleontol 80:760–767CrossRefGoogle Scholar
  94. Tapanila L, Roberts EM, Bouaré ML, Sissoko F, O’Leary MA (2004) Bivalve borings in phosphatic coprolites and bone, Cretaceous-Paleogene, Northeastern Mali. Palaios 19:565–573CrossRefGoogle Scholar
  95. Taylor PD (1990a) Encrusters. In: Briggs DEG, Crowther PR (eds) Palaeobiology: a synthesis. Blackwell, Oxford, pp 346–351CrossRefGoogle Scholar
  96. Taylor PD (1990b) Preservation of soft-bodied and other organisms by bioimmuration—a review. Palaeontology 33:1–17Google Scholar
  97. Taylor PD (1999) Bryozoa. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, Chichester, pp 623–646Google Scholar
  98. Taylor PD, Wilson MA (2002) A new terminology for marine organisms inhabiting hard substrates. Palaios 17:522–525CrossRefGoogle Scholar
  99. Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103CrossRefGoogle Scholar
  100. Todd JA, Palmer JT (2002) The Jurassic bivalve genus Placunopsis: new evidence on anatomy and affinities. Palaeontology 45:487–510CrossRefGoogle Scholar
  101. Vinn O, Wilson MA (2010) Sabellid-dominated shallow water calcareous polychaete tubeworm association from the equatorial Tethys Ocean (Matmor Formation, Middle Jurassic, Israel). N Jahrb Geol Pal Abh 258:31–38CrossRefGoogle Scholar
  102. Voigt E (1968) Über-Hiatus-Konkretion (dargestellt an Beispielen aus dem Lias). Geol Rundsch 58:281–296CrossRefGoogle Scholar
  103. Walter B (1970) Les bryozoaires jurassiques en France. Docum Labor Géol Fac Sci Lyon 35[for 1969]:1–328Google Scholar
  104. Ware S (1975) British Lower Greensand Serpulidae. Palaeontology 18:93–116Google Scholar
  105. Wetzel A, Allia V (2000) The significance of hiatus beds in shallow-water mudstones: an example from the Middle Jurassic of Switzerland. J Sediment Res 70:170–180CrossRefGoogle Scholar
  106. Wierzbowski H, Joachimski M (2007) Reconstruction of late Bajocian–Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland). Palaeogeogr Palaeoclimatol Palaeoecol 254:523–540CrossRefGoogle Scholar
  107. Wilson MA (1985) Disturbance and ecologic succession in an Upper Ordovician cobble-dwelling hardground fauna. Science 228:575–577CrossRefGoogle Scholar
  108. Wilson MA (1986) Coelobites and spatial refuges in a Lower Cretaceous cobble-dwelling hardground fauna. Palaeontology 29:691–703Google Scholar
  109. Wilson MA (1987) Ecological dynamics on pebbles, cobbles, and boulders. Palaios 2:594–599CrossRefGoogle Scholar
  110. Wilson MA (2007) Macroborings and the evolution of marine bioerosion. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 356–367Google Scholar
  111. Wilson MA, Palmer TJ (1994) A carbonate hardground in the Carmel Formation (Middle Jurassic, SW Utah, USA) and its associated encrusters, borers and nestlers. Ichnos 3:79–87CrossRefGoogle Scholar
  112. Wilson MA, Taylor PD (2001) Palaeoecology of hard substrate faunas from the Cretaceous Qahlah Formation of the Oman Mountains. Palaeontology 44:21–41CrossRefGoogle Scholar
  113. Wilson MA, Ozanne CR, Palmer TJ (1998) Origin and paleoecology of free-rolling oyster accumulations (ostreoliths) in the Middle Jurassic of southwestern Utah, USA. Palaios 13:70–78CrossRefGoogle Scholar
  114. Wilson MA, Feldman HR, Bowen JC, Avni Y (2008) A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (Late Callovian) of southern Israel. Palaeogeogr Palaeoclimatol Palaeoecol 263:24–29CrossRefGoogle Scholar
  115. Wilson MA, Feldman HR, Krivicich EB (2010) Bioerosion in an equatorial Middle Jurassic coral-sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeogr Palaeoclimatol Palaeoecol 289:93–101CrossRefGoogle Scholar
  116. Zágoršek K, Taylor PD, Vodrážka R (2009) Coexistence of symbiotic hydroids (Protulophila) on serpulids and bryozoans in a cryptic habitat at Chrtníky (lower Turonian, Czech Republic). Bull Geosci 84:631–636CrossRefGoogle Scholar
  117. Zatoń M (2007) Amonity z iłów rudonośnych (bajos-baton) Jury Polskiej. Unpublished Ph.D. ThesisGoogle Scholar
  118. Zatoń M, Taylor PD (2009a) Middle Jurassic cyclostome bryozoans from the Polish Jura. Acta Palaeontol Polon 54:267–288CrossRefGoogle Scholar
  119. Zatoń M, Taylor PD (2009b) Microconchids (Tentaculita) from the Middle Jurassic of Poland. Bull Geosci 84:653–660CrossRefGoogle Scholar
  120. Zatoń M, Marynowski L, Bzowska G (2006) Konkrecje hiatusowe z iłów rudonośnych Wyżyny Krakowsko-Częstochowskiej. Przeg Geol 54:131–138Google Scholar
  121. Zatoń M, Marynowski L, Szczepanik P, Bond DPG, Wignall PB (2009) Redox conditions during sedimentation of the Middle Jurassic (Upper Bajocian-Bathonian) clays of the Polish Jura (south-central Poland). Facies 55:103–114CrossRefGoogle Scholar
  122. Ziebis W, Forster S, Huettel M, Jørgensen BB (1996) Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature 382:619–622CrossRefGoogle Scholar
  123. Zuschin M, Baal C (2007) Large gryphaeid oysters as habitats for numerous sclerobionts: a case study from the northern Red Sea. Facies 53:319–327CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michał Zatoń
    • 1
    Email author
  • Sylwia Machocka
    • 1
  • Mark A. Wilson
    • 2
  • Leszek Marynowski
    • 1
  • Paul D. Taylor
    • 3
  1. 1.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland
  2. 2.Department of GeologyThe College of WoosterWoosterUSA
  3. 3.Department of PalaeontologyNatural History MuseumLondonUK

Personalised recommendations