, Volume 56, Issue 3, pp 337–352 | Cite as

Genesis of microbialites as contemporaneous framework components of deglacial coral reefs, Tahiti (IODP 310)

  • H. WestphalEmail author
  • K. Heindel
  • M. Brandano
  • J. Peckmann
Original Article


Deglacial reefs from Tahiti (IODP 310) feature a co-occurrence of zooxanthellate corals with microbialites that compose up to 80 vol% of the reef framework. The notion that microbialites tend to form in more nutrient-rich environments has previously led to the concept that such encrustations are considerably younger than the coral framework, and that they have formed in deeper storeys of the reef edifice, or that they represent severe disturbances of the reef ecosystem. As indicated by their repetitive interbedding with coralline red algae, the microbialites of this reef succession of Tahiti, however, formed immediately after coral growth under photic conditions. Clearly, the deglacial reef microbialites present in the IODP 310 cores did not follow disturbances such as drowning or suffocation by terrestrial material, and are not “disaster forms”. Given that the corals and the microbialites developed in close spatial proximity, highly elevated nutrient levels caused by fluvial or groundwater transport from the volcanic hinterland are an unlikely cause for the exceptionally voluminous development of microbialites. That voluminous deglacial reef microbialites generally are restricted to volcanic islands, however, implies that moderately, and possibly episodically elevated nutrient levels favored this type of microbialite formation.


Tahiti IODP 310 Microbialites Reef development Nutrients 



This research used samples and data provided by the Integrated Ocean Drilling Program (IODP) as part of the IODP Expedition 310 Science Party research of HW (sample requests MSP0070 and MSP21083B). Our thanks are extended to the co-chiefs Gilbert Camoin and Yasufumi Iryu and to the IODP 310 Science Party, in particular Jody Webster, for discussions and collaboration. Elizabeth Abbey and James Collins are thanked for information on their ongoing work on the Tahiti cores. Gilles Lericolais helped with the visualization of the seismic data. Thanks are due to two anonymous referees, Nora Noffke, and Gene Rankey, for their helpful and constructive comments, and to FACIES editor André Freiwald. SEM work was undertaken in the laboratory of Helmut Willems (Universität Bremen) with the technical support of Petra Witte. The study was funded by the Deutsche Forschungsgemeinschaft (DFG We2492/8 to HW).


  1. Adachi N, Ezaki Y, Pickett JW (2007) Interrelations between framework-building and encrusting skeletal organisms and microbes: more-refined growth history of Lower Devonian bindstones. Sedimentology 54:89–105CrossRefGoogle Scholar
  2. Adey WH (1986) Coralline algae as indicators of sea-level. In: van de Plassche O (ed) Sea-level research: a manual for the collection and evaluation of data. Free University of Amsterdam, Amsterdam, pp 229–279Google Scholar
  3. Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26:651–667CrossRefGoogle Scholar
  4. Arp G, Ostertag-Henning C, Yücekent S, Reitner J, Thiel V (2008) Methane-related microbial gypsum calcitization in stromatolites of a marine evaporative setting (Münder Formation, Upper Jurassic, Hils Syncline, north Germany). Sedimentology 55:1227–1251CrossRefGoogle Scholar
  5. Babel M (2004) Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol Pol 54:219–249Google Scholar
  6. Black M (1933) The algal sediments of Andros Island, Bahamas. Roy Soc Lond Philos Trans B 122:165–192Google Scholar
  7. Bosence DWJ (1983) The occurrence and ecology of recent rhodoliths. In: Peryt TM (ed) Coated grains. Springer, Berlin Heidelberg New York, pp 225–242Google Scholar
  8. Brachert TC, Dullo WC (1991) Laminar micrite crusts and associated foreslope processes, Red Sea. J Sediment Petrol 61:354–363Google Scholar
  9. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411CrossRefGoogle Scholar
  10. Cabioch G, Taylor FW, Corrège T, Récy J, Edwards LR, Burr GS, Le Cornec F, Banks KA (1999) Occurrence and significance of microbialites in the uplifted Tasmaloum reef (SW Espiritu Santo, SW Pacific). Sediment Geol 126:305–316CrossRefGoogle Scholar
  11. Cabioch G, Camoin G, Webb GE, Le Cornec F, Molina MG, Pierre C, Joachimski MM (2006) Contribution of microbialites to the development of coral reefs during the last deglacial period: case study from Vanuatu (South-West Pacific). Sediment Geol 185:297–318CrossRefGoogle Scholar
  12. Camoin GF, Montaggioni LF (1994) High energy coralgal-stromatolite frameworks from Holocene reefs (Tahiti, French Polynesia). Sedimentology 41:655–676CrossRefGoogle Scholar
  13. Camoin GF, Gautret P, Montaggioni LF, Cabioch G (1999) Nature and environmental significance of microbialites in Quaternary reef: the Tahiti paradox. Sediment Geol 126:271–304CrossRefGoogle Scholar
  14. Camoin GF, Cabioch G, Hamelin B, Lericolais G (2003) Rapport de mission SISMITA. Institut de recherche pour le développement, Papeete, Polynesia Francaise, p 20Google Scholar
  15. Camoin GF, Cabioch G, Eisenhauer A, Braga J-C, Hamelin B, Lericolais G (2006) Environmental significance of microbialites in reef environments during the last deglaciation. Sediment Geol 185:277–295CrossRefGoogle Scholar
  16. Camoin GF, Iryu Y, McInroy DB, IODP Expedition 310 Scientists (2007a) IODP expedition 310 reconstructs sea level, climatic, and environmental changes in the South Pacific during the last deglaciation. Sci Drill 5:4–12Google Scholar
  17. Camoin GF, Iryu Y, McInroy DB, Expedition 310 Scientists (2007b) Proceedings of IODP, 310: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.310.2007
  18. Castillo P (2009) Data report: geochemistry of volcaniclastic sediments drilled during IODP Expedition 310 in Tahiti. In: Camoin GF, Iryu Y, McInroy DB, Expedition 310 Scientists, Proceedings of IODP, 310: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.310.202.2009
  19. Czernik J, Goslar T (2001) Preparation of graphite targets in the Gliwice Radiocarbon Laboratory for AMS 14C dating. Radiocarbon 43:283–291Google Scholar
  20. Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219:385–386CrossRefGoogle Scholar
  21. Dupraz C, Strasser A (2002) Nutritional modes in coral microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change. Palaios 17:449–471CrossRefGoogle Scholar
  22. Expedition 310 Scientists (2006) Tahiti sea level: the last deglacial sea level rise in the South Pacific: offshore drilling in Tahiti (French Polynesia): IODP Prel Rept 310Google Scholar
  23. Flamand F, Cabioch G, Payri C, Pelletier B (2008) Nature and biological composition of the New Caledonian outer barrier reef slopes. Mar Geol 250:157–179CrossRefGoogle Scholar
  24. Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef slices. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:391–463Google Scholar
  25. Hallock P (1987) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclimatol Palaeoecol 63:275–291CrossRefGoogle Scholar
  26. Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398CrossRefGoogle Scholar
  27. Heindel K, Birgel D, Peckmann P, Kuhnert H, Westphal H (2009a) Sulfate-reducing bacteria as major players in the formation of reef-microbialites during the last sea-level rise (Tahiti, IODP 310). Geochim Cosmochim Acta 73(Suppl S):A514Google Scholar
  28. Heindel K, Westphal H, Wisshak M (2009b) Bioerosion in the reef framework, IODP expedition 310 off Tahiti (Tiarei, Maraa, and Faaa sites): In: Camoin GF, Iryu Y, McInroy DB, The Expedition 310 Scientists, Proceedings of IODP, 310: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.310.201.2009
  29. Heindel K, Wisshak M, Westphal H (2009c) Microbioerosion in Tahitian reefs: a record of environmental change during the last deglacial sea-level rise (IODP 310). Lethaia 42:322–340CrossRefGoogle Scholar
  30. Hildenbrand A, Marlin C, Conroy A, Gillot P-Y, Filly A, Massault M (2005) Isotopic approach of rainfall and groundwater circulation in the volcanic structure of Tahiti-Nui (French Polynesia). J Hydrol 302:187–208CrossRefGoogle Scholar
  31. Hughen KA, Baillie MGL, Bard E et al (2004) Marine 04 marine radiocarbon age calibration 0–26 cal kyr BP. Radiocarbon 46:1059–1086Google Scholar
  32. Jenkins RG, Hikida Y, Chikaraishi Y, Ohkouchi N, Tanabe K (2008) Microbially induced formation of ooid-like coated grains in the Late Cretaceous methane-seep deposits of the Nakagawa area, Hokkaido, northern Japan. Island Arc 17:261–269CrossRefGoogle Scholar
  33. Konhauser KO (2009) Bacterial clay authigenesis. In: Reitner J, Thiel V (eds) Encyclopedia of Geobiology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Land LS, Moore CH (1980) Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican island slope. J Sediment Petrol 50:357–370Google Scholar
  35. Leinfelder RR (2001) Jurassic reef ecosystems. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer, Dordrecht, pp 251–309Google Scholar
  36. Logan BH (1961) Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. J Geol 69:517–533CrossRefGoogle Scholar
  37. Montaggioni LF (2005) History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth Sci Rev 71:1–75CrossRefGoogle Scholar
  38. Montaggioni F, Camoin GF (1993) Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology 21:149–152CrossRefGoogle Scholar
  39. Neuweiler F, Reitner J (1995) Epifluorescence-microscopy of selected automicrites from lower Carnian Cipit-boulders of the Cassian Formation (Seeland Alpe, Dolomites). Facies 32:26–28Google Scholar
  40. Olivier N, Carpentier C, Martin-Garin B, Lathuilière B, Gaillard C, Ferry S, Hantzpergue P, Geister J (2004) Coral-microbialite reefs in pure carbonate versus mixed carbonate-siliciclastic depositional environments: the example of the Pagny-sur-Meuse section (Upper Jurassic, northeastern France). Facies 50:229–255CrossRefGoogle Scholar
  41. Reid RP, MacIntyre IG, Browne KM, Steneck RS, Miller T (1995) Modern marine stromatolites in the Exuma Cays, Bahamas—uncommonly common. Facies 33:1–17CrossRefGoogle Scholar
  42. Reitner J, Gautret P, Marin F, Neuweiler F (1995) Automicrites in a modern microbialite-formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Institut Océanographique, Monaco, Bulletin, no. spécial 14:237–263Google Scholar
  43. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl 1):179–214CrossRefGoogle Scholar
  44. Riding R (2005) Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state. Rev Esp Micropaleontol 37:23–39Google Scholar
  45. Riding R, Martín JM, Braga JC (1991) Coral-stromatolite reef framework, upper Miocene, Almería, Spain. Sedimentology 38:799–818CrossRefGoogle Scholar
  46. Rodland DL, Bottjer DJ (2001) Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95–101Google Scholar
  47. Sanz-Montero ME, Rodriguez-Aranda JP, Del Cura MAG (2008) Dolomite-silica stromatolites in Miocene lacustrine deposits from the Duero Basin, Spain: the role of organotemplates in the precipitation of dolomite. Sedimentology 55:729–750CrossRefGoogle Scholar
  48. Schubert JK, Bottjer DJ (1992) Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883–886CrossRefGoogle Scholar
  49. Stuiver M, Braziunas TF (1993) Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35:137–189Google Scholar
  50. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  51. Trichet J, Défarge C (1995) Non‐biologically supported organomineralization. Bulletin de l’Institut Océanographique Monaco no. spéc. 14:203–236Google Scholar
  52. von Knorre H, Krumbein WE (2000) Bacterial calcification. In: Riding R, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 25–31Google Scholar
  53. Webb GE, Jell JS (1997) Cryptic microbialite in subtidal reef framework and intertidal solution cavities in beachrock, Heron Reef, Great Barrier Reef, Australia: preliminary observations. Facies 36:219–223Google Scholar
  54. Webb GE, Jell JS (2006) Growth rate of Holocene reefal microbialites—implications for use as environmental proxies, Heron Reef southern Great Barrier Reef. ASEG Extended Abstracts 2006 (1). doi: 10.1071/ASEG2006ab191
  55. Webb GE, Baker JC, Jell JS (1998) Inferred syngenetic textural evolution in Holocene cryptic reefal microbialites, Heron Reef, Great Barrier Reef, Australia. Geology 26:355–358CrossRefGoogle Scholar
  56. Whalen MT, Day J, Eberli GP, Homewood PW (2002) Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta Basin, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 181:127–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • H. Westphal
    • 1
    Email author
  • K. Heindel
    • 1
  • M. Brandano
    • 2
  • J. Peckmann
    • 1
  1. 1.MARUM, Center for Marine Environmental SciencesUniversität BremenBremenGermany
  2. 2.Dipartimento di Scienze della TerraUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations