, Volume 56, Issue 1, pp 27–46 | Cite as

Meteoric diagenesis of Quaternary carbonate-rocky talus slope successions (Northern Calcareous Alps, Austria)

  • Diethard G. Sanders
  • Marc Ostermann
  • Jan Kramers
Original Article


In the Northern Calcareous Alps (NCA), meteoric cementation of Quaternary talus slopes was mainly sourced by dissolution of matrix and lithoclasts, by leaching of glacial till, and by groundwaters entered from underneath. Cement precipitation can take place within a few hundreds to a few thousands of years after talus deposition, but later diagenetic changes locally are indicated. Downslope along well-preserved talus successions, a change in prevalent diagenetic pathways is related to prolonged availability of pore waters from the apex to the toe of the slope. Talus slopes contain a significant proportion of carbonate mud probably produced by a combination of physical, chemical, and biological processes. 234U/230Th cementation ages of talus successions are scattered over a total range of 5–480 ka. The talus relicts of the NCA thus became cemented at highly different times during the late Quaternary. With the available data, we could not identify a specific palaeoclimatic significance of talus cementation.


Eastern Alps Quaternary Talus slopes Diagenesis Cementation Uranium–thorium 

Supplementary material

10347_2009_194_MOESM1_ESM.doc (100 kb)
Supplementary material 1 (DOC 100 kb)
10347_2009_194_MOESM2_ESM.doc (120 kb)
Supplementary material 2 (DOC 120 kb)
10347_2009_194_MOESM3_ESM.doc (58 kb)
Supplementary material 3 (DOC 57 kb)


  1. Ampferer O (1907) Über Gehängebreccien der nördlichen Kalkalpen. Jahrbuch geol Reichsanst 57:727–752Google Scholar
  2. Ampferer O (1914) Über die Aufschliessung der Liegendmoräne unter der Höttinger Brekzie im östl Weiherburggraben bei Innsbruck. Zeitschrift f Gletscherkunde 8:145–159Google Scholar
  3. Ampferer O (1935) Geologischer Führer für die Gesäuseberge. Geologische Bundesanstalt, Vienna, 177 ppGoogle Scholar
  4. Bates RL, Jackson JA (eds) (1980) Glossary of geology. American Geological Institute, Falls Church (Va), 749 ppGoogle Scholar
  5. Bathurst RC (1975) Carbonate sediments and their diagenesis. In: Developments in sedimentology, vol 12. Elsevier, Amsterdam, 658 ppGoogle Scholar
  6. Bertran P, Texier J-P (1994) Structures sédimentaires d’un cone de flots de débris (Vars, Alpes francaises méridionales). Permafr Periglac Proc 5:155–170CrossRefGoogle Scholar
  7. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  8. Debaene G (2003) Uranium-series dating of marly sediments: applications to Jaroszów fossil lake (SW Poland). Geochronometria 22:15–26Google Scholar
  9. Elbracht J (2002) Karbonatische Zementation pleistozäner Lockersedimente NW-Deutschlands, Unpublished Ph.D. thesis, University of Hannover, 214 ppGoogle Scholar
  10. Fliri F (1975) Das Klima der Alpen im Raume von Tirol. Universitätsverlag Wagner, Monographien zur Landeskunde Tirols, Innsbruck-München, 454 ppGoogle Scholar
  11. Flügel E (2004) Microfacies of carbonate rocks. Springer, Heidelberg, 976 ppGoogle Scholar
  12. Frank N, Braum M, Hambach U, Mangini A, Wagner G (2000) Warm period growth of travertine during the last interglaciation in southern Germany. Quat Res 54:38–48CrossRefGoogle Scholar
  13. Geyh MA (2001) Reflections on the 230Th/234U dating of dirty material. Geochronometria 20:9–14Google Scholar
  14. Geyh MA (2005) Handbuch der physikalischen und chemischen Altersbestimmung. Wissenschaftliche Buchgesellschaft, Darmstadt, 211 ppGoogle Scholar
  15. Griebler C, Mösslacher F (2003) Grundwasser-Ökologie. Facultas, Vienna, 495 ppGoogle Scholar
  16. Hays PD, Grossman EL (1991) Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology 19:441–444CrossRefGoogle Scholar
  17. Heissel G (1993) Die Hydrogeologie der Mühlauer Quellen im Lichte geologischer und strukturgeologischer Erkenntnisse unter Einbeziehung besonderer Aspekte der Geologie Tirols. Landesgeologie Tirol 1:1-43. Amt der Tiroler Landesregierung, Athesia Tyrolia Druck, InnsbruckGoogle Scholar
  18. Hoefs J (1997) Stable isotope geochemistry. Springer, Heidelberg, 201 ppGoogle Scholar
  19. Hoppert M, Flies C, Pohl W, Günzl B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428CrossRefGoogle Scholar
  20. Humer G et al (1995) Niederschlagsisotopennetz Österreich. Monographien UBA 52:86Google Scholar
  21. Kaufman A (1993) An evaluation of several methods for determining 230Th/234U ages in impure carbonates. Geochim Cosmochim Acta 57:2303–2317CrossRefGoogle Scholar
  22. Kaufman A, Broecker WS (1965) Comparison of 230Th and 14C ages for carbonate materials from lakes Lahontan and Bonneville. J Geophys Res 70:4039–4054CrossRefGoogle Scholar
  23. Kilian S (2008) Untersuchung der feinkörnigen Matrix in aktiven, felssturz-dominierten Talus-Hängen. Unpublished BSc Thesis, University of Innsbruck, 44 ppGoogle Scholar
  24. Ladurner J (1956) Mineralführung und Korngrössen von Sanden (Höttinger Breccie und Umgebung). Tschermaks mineral petrogr Mitt 5:102–109Google Scholar
  25. Lin JC, Broecker WS, Anderson RF, Hemming S, Rubenstone JL, Bonani G (1996) New 230Th/234U and 14C ages from Lake Lahontan carbonates, Nevada, USA, and a discussion of the origin of initial thorium. Geochim Cosmochim Acta 60:2817–2832CrossRefGoogle Scholar
  26. Lohmann KC (1988) Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James NP, Choquette PW (eds) Paleokarst. Springer, Heidelberg, pp 58–80Google Scholar
  27. Ludwig KR, Titterington DM (1994) Calculation of 230Th/234U isochrons, ages, and errors. Geochim Cosmochim Acta 58:5031–5042CrossRefGoogle Scholar
  28. Mallick R, Frank N (2002) A new technique for precise uranium-series dating of travertine micro-samples. Geochim Cosmochim Acta 66:4261–4272CrossRefGoogle Scholar
  29. Obojes U (2003) Quartärgeologische Untersuchungen an den Hängen der Innsbrucker Nordkette (Höttinger Breccie). Unpubl Diploma Thesis, Univ of Innsbruck, 89 ppGoogle Scholar
  30. Ostermann M (2006) Thorium–uranium age-dating of “impure” carbonate cements of selected Quaternary depositional systems of western Austria: results, implications, problems. Unpublished PhD Thesis, University of Innsbruck, 173 ppGoogle Scholar
  31. Ostermann M, Sanders D, Kramers J (2006a) 230Th/234U ages of calcite cements of the proglacial valley fills of Gamperdona and Bürs (Riss ice age, Vorarlberg, Austria): geological implications. Austrian J Earth Sci 99:31–41Google Scholar
  32. Ostermann M, Sanders D, Kramers J (2006b) Uranium/thorium age-dating of “impure” carbonate cements of selected Quaternary depositional systems of western Austria: results and implications. In: Pangeo Austria 2006. Innsbruck Univ Press Conf Series, Innsbruck, pp 233–234Google Scholar
  33. Ostermann M, Sanders D, Prager C, Kramers J (2007) Aragonite and calcite cementation in ‘boulder-controlled’ meteoric environments on the Fern Pass rockslide (Austria): implications for radiometric age-dating of catastrophic mass movements. Facies 53:189–208CrossRefGoogle Scholar
  34. Patzelt G (1980) Neue Ergebnisse der Spät- und Postglazialforschung in Tirol. Jahresber d Österr Geogr Ges 76/77:11–18Google Scholar
  35. Pentecost A, Whitton BA (2000) Limestones. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 257–279Google Scholar
  36. Rightmire CT, Hanshaw BB (1973) Relationship between carbon isotope composition of soil CO2 and dissolved carbonate species in groundwater. Water Resour Res 9:958–967CrossRefGoogle Scholar
  37. Rosholt N (1976) 230Th/234U dating of travertines and caliche rinds (abstr.). Geol Soc Am Abstr Progr 8:1079Google Scholar
  38. Rüf B (2006) Quelltuff in Vorarlberg—Sedimentologische, materialkundliche und bauhistorische Aspekte. Unpublished Diploma Thesis, University of Innsbruck, 173 ppGoogle Scholar
  39. Sanders D, Ostermann M (2006) Depositional setting of the sedimentary rocks containing the “warm-interglacial” fossil flora of the Höttinger Brekzie (Pleistocene, Northern Calcareous Alps, Austria): a reconstruction. Veröff Tiroler Landesmus Ferdinandeum 86:91–118Google Scholar
  40. Sanders D, Wertl W (2009) ‘Cool-spring’ carbonate deposystems, Eastern Alps: controls on formation and mineralogy (abstr.). Geophys Res Abstr 11:EGU2009-2730Google Scholar
  41. Sanders D, Unterwurzacher M, Rüf B (2006a) Microbially induced calcium carbonate in tufas of the western Eastern Alps: a first overview. Geo Alp 3:167–189Google Scholar
  42. Sanders D, Krainer K, Unterwurzacher M (2006b) Geological controls on formation of tufa-precipitating spring (Eastern Alps): what do the maps tell? In: Pangeo Austria 2006. Innsbruck Univ Press Conf Series, Innsbruck, pp 291–292Google Scholar
  43. Sanders D, Prager C, Ostermann M, Kramers J, Haas U (2007) Local cementation of carbonate-lithic rockslides: prerequisite to 234U/230Th proxy-dating the mass-wasting event (abstr.). Geo Alp 4:32Google Scholar
  44. Sanders D, Tessadri R, Rott E (2008) Quaternary spring-associated limestones of the Eastern Alps: implications for marine carbonates (abstr.). Geophys Res Abstr 10:EGU2008-A-02104Google Scholar
  45. Sanders D, Ostermann M, Kramers J (2009) Quaternary carbonate-rocky talus slope successions (Eastern Alps, Austria): sedimentary facies and facies architecture. Facies (in press). doi: 10.1007/s10347-008-0175-z
  46. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae geol Helvetiae 97:93–117CrossRefGoogle Scholar
  47. Schrott L, Hufschmidt G, Hankammer M, Hoffmann T, Dikau R (2004) Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 55:45–63CrossRefGoogle Scholar
  48. Spötl C, Vennemann T (2003) Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun Mass Spectrom 17:1004–1006CrossRefGoogle Scholar
  49. Van Husen D (1999) Geological processes during the Quaternary. Mitt österr geol Ges 92:135–156Google Scholar
  50. Van Vliet-Lanoe B (1976) Traces de ségrégation de glace en lentilles associées aux sols et phénomènes périglaciaires fossiles. Biuletyn Periglacjalny 26:41–55Google Scholar
  51. Darling WG, Bath AH, Gibson JJ, Rozanski K (2005) Isotopes in water. In: Leng MJ (ed) Isotopes in palaeoenvironmental research. Dev Palaeoenviron Res, vol 10, pp 1–66Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Diethard G. Sanders
    • 1
  • Marc Ostermann
    • 1
  • Jan Kramers
    • 2
  1. 1.Institute of Geology and PalaeontologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute of Geological SciencesUniversity of BerneBernSwitzerland

Personalised recommendations