, Volume 56, Issue 1, pp 157–172 | Cite as

Carbonate mud mounds, conglomerates, and sea-level history in the Katian (Upper Ordovician) of central Sweden

  • Mikael CalnerEmail author
  • Oliver Lehnert
  • Michael Joachimski
Original Article


The Katian (Upper Ordovician) facies succession of the Siljan district, central Sweden, records some of the most prominent environmental changes in the Ordovician of Baltoscandia. These changes include two separate phases of major sea-level drawdown that were of basinwide and presumably global importance. The first regression and lowstand terminated an entire generation of carbonate mud mounds (the Kullsberg Limestone) and resulted in the formation of polymict carbonate conglomerates (Skålberg Limestone) belonging to the Amorphognathus superbus Zone. New stable isotope data from the Amtjärn quarry shows that this is immediately after the peak of the Guttenberg Carbon Isotope Excursion (GICE), which reaches a δ13C peak value at 3.3‰ in the uppermost Amorphognathus tvaerensis Conodont Zone. A second major regression and sea-level lowstand is manifested by palaeokarst morphologies in the Slandrom Limestone, which formed close in time to the comparably minor Waynesville positive carbon excursion in the basal Amorphognathus ordovicicus Conodont Zone. The widespread exposure associated with this latter lowstand terminated carbonate production in much of the basin, and, during the subsequent flooding, organic-rich, graptolitic shale formed across most of Baltoscandia. The two corresponding sequence boundaries are amalgamated at the top of truncated carbonate mud mounds in the Siljan district, resulting in a pronounced Middle Katian hiatus in the immediate mound areas.


GICE Conglomerates Black shale Glaciation Katian Siljan district Sweden 



We are grateful to Stig M. Bergström, Jan-Ove Ebbestad and Åsa Frisk for many interesting discussions on the Upper Ordovician stratigraphy of Sweden. Valuable comments from the reviewers Stig M. Bergström and Patrick McLaughlin further improved the manuscript. MC acknowledges the Swedish Research Council (VR) for support over many years and Crafoord for a grant to recover the Borenshult-1 drillcore. OL and MJ are grateful to the support by the Deutsche Forschungsgemeinschaft (DFG grant to W. Buggisch, Bu 312/59).


  1. Ainsaar L, Meidla T, Martma T (1999) Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia. Geol Mag 136:49–62. doi: 10.1017/S001675689900223X CrossRefGoogle Scholar
  2. Ainsaar L, Meidla T, Martma T (2004) The Middle Caradoc facies and faunal turnover in the Late Ordovician Baltoscandian palaeobasin. Palaeogeogr Palaeoclimatol Palaeoecol 210:119–133. doi: 10.1016/j.palaeo.2004.02.046 CrossRefGoogle Scholar
  3. Bergström SM (2007) The Ordovician conodont biostratigraphy in the Siljan region, south-central Sweden: a brief review of an international reference standard. In: Ebbestad J-OR, Wickström LM, Högström ES (eds) 9th meeting of the working group on Ordovician Geology of Baltoscandia, Field Guide And Abstracts. Sveriges geologiska undersökning, Rapporter och meddelanden 128:26–41Google Scholar
  4. Bergström SM, Löfgren A, Grahn Y (2004a) The stratigraphy of the Upper Ordovician carbonate mounds in the subsurface of Gotland. GFF 126:289–296CrossRefGoogle Scholar
  5. Bergström SM, Huff WD, Saltzman MR, Kolata DR, Leslie SA (2004b) The greatest volcanic ash falls in the Phanerozoic. Sediment Rec 2:4–8Google Scholar
  6. Bergström SM, Young S, Schmitz B, Saltzman MR (2007) Upper Ordovician (Katian) δ13C chemostratigraphy: a transatlantic comparison. Acta Palaeontol Sin 46:37–39Google Scholar
  7. Bergström SM, Chen X, Gutiérrez-Marco JC, Dronov A (2009a) The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42:1–11. doi: 10.1111/j.1502-3931.2008.00136.x CrossRefGoogle Scholar
  8. Bergström SM, Schmitz B, Saltzman MR, Huff WD (2009b) The Upper Ordovician Guttenberg δ13C excursion (GICE) in North America and Baltoscandia: occurrence, chronostratigraphic significance, and palaeoenvironmental relationship. Geol Soc Am Spec Paper (in press)Google Scholar
  9. Brenchley PJ, Marshall JD, Carden GA, Robertson DBR, Long DGF, Meidla T, Hints L, Anderson TF (1994) Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22:295–298. doi: 10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2 CrossRefGoogle Scholar
  10. Brenchley PJ, Carden GA, Hints L, Kaljo D, Marshall JD, Martma T, Meidla T, Nõlvak J (2003) High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geol Soc Am Bull 115:89–104. doi: 10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2 CrossRefGoogle Scholar
  11. Buggisch W, Joachimski M, Lehnert O (2008) Late Ordovician (Turinian–Chatfieldian) climate of Laurentia. In: 7th Baltic stratigraphical conference. Tallinn, May 2008. Abstracts and Field Guide: 13Google Scholar
  12. Calner M, Lehnert O (2008) A first report on the Upper Ordovician stratigraphy of the Borenshult-1 core, Motala, Sweden. In: 7th Baltic stratigraphical conference 17–18 May 2008, Tallinn, Estonia. Abstracts and Field Guide, p 14Google Scholar
  13. Cherns L, Wheeley JR (2007) A pre-Hirnantian (Late Ordovician) interval of global cooling––the Boda event reassessed. Palaeogeogr Palaeoclimatol Palaeoecol 251:449–460. doi: 10.1016/j.palaeo.2007.04.010 CrossRefGoogle Scholar
  14. Dronov A, Holmer E (1999) Depositional sequences in the Ordovician of Baltoscandia. Acta Univ Carol Geol 43:133–136Google Scholar
  15. Ebbestad J-OR, Wickström LM, Högström ES (eds) (2007) In: 9th meeting of the working group on Ordovician Geology of Baltoscandia (WOGOGOB), Field Guide and Abstracts. Sveriges geologiska undersökning, Rapporter och meddelanden 128:1–110Google Scholar
  16. Hadding A (1941) The pre-Quaternary sedimentary rocks of Sweden VI, reef limestones. Lunds universitets årsskrift, Ny följd, afdelning 2(37):1–137Google Scholar
  17. Hatch JR, Jacobson SR, Witzke BJ, Risatti JB, Anders DE, Watney WL, Newell KD, Vuletich AK (1987) Possible late Middle Ordovician organic carbon isotope excursion: evidence from Ordovician oils and hydrocarbon source rocks, mid-continent and east-central United States. Am Assoc Pet Geol Bull 71:1342–1354Google Scholar
  18. Henkel H, Aaro S (2005) Geophysical investigations of the Siljan impact structure––a short review. In: Koeberl C, Henkel H (eds) Impact tectonics. Springer, Berlin Heidelberg New York, pp 247–283CrossRefGoogle Scholar
  19. Isberg O (1917) Bidrag till kännedomen om Leptaenakalkens stratigrafi. Geol Foren Stockh Forh 39:199–235Google Scholar
  20. Jaanusson V (1973) Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia 6:11–34. doi: 10.1111/j.1502-3931.1973.tb00871.x CrossRefGoogle Scholar
  21. Jaanusson V (1976) Faunal dynamics in the Middle Ordovician (Viruan) of Baltoscandia. In: Bassett MG (ed) The Ordovician System: Proceedings of a Palaeontological Association symposium, Birmingham September 1974, Cardiff, pp 301–326Google Scholar
  22. Jaanusson V (1982) The Siljan district. In: Bruton DL, Williams SH (eds) IV International symposium on the Ordovician System. Field excursion guide, vol 279. Paleontological contributions from the University of Oslo, pp 15–42Google Scholar
  23. Jaanusson V (1995) Confacies differenciation and upper Middle Ordovician correlation in the Baltoscandian basin. In: Proceedings of the Estonian Academy of Sciences. Geology 44:73–86Google Scholar
  24. Kaljo D, Hints L, Martma T, Nõlvak J (2001) Carbon isotope stratigraphy in the latest Ordovician of Estonia. Chem Geol 175:49–59. doi: 10.1016/S0009-2541(00)00363-6 CrossRefGoogle Scholar
  25. Kaljo D, Martma T, Männik P, Viira V (2003a) Implications of Gondwana glaciations in the Baltic Late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bull Soc Geol Fr 174:59–66. doi: 10.2113/174.1.59 CrossRefGoogle Scholar
  26. Kaljo D, Martma T, Männik P, Viira V (2003b) Implications of Gondwana glaciations in the Baltic Late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bull Soc Geol Fr 174:59–66. doi: 10.2113/174.1.59 CrossRefGoogle Scholar
  27. Kaljo D, Hints L, Martma T, Nõlvak J, Oraspõld A (2004) Late Ordovician carbon isotope trend in Estonia, its significance in stratigraphy and environmental analysis. Palaeogeogr Palaeoclimatol Palaeoecol 210:165–185. doi: 10.1016/j.palaeo.2004.02.044 CrossRefGoogle Scholar
  28. Kaljo D, Martma T, Saadre T (2007) Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeogr Palaeoclimatol Palaeoecol 245:138–155. doi: 10.1016/j.palaeo.2006.02.020 CrossRefGoogle Scholar
  29. Lindström M, Schmitz B, Sturkell E, Ormö J (2008) Palaeozoic impact craters. 33rd international geological congress, Oslo. Excursion guide no. 10, p 54 Google Scholar
  30. Ludvigson GA, Witzke BJ, Gonzalez LA, Carpenter SJ, Schneider CL, Hasiuk F (2004) Late Ordovician (Turinian–Chatfieldian) carbon isotope excursions and their stratigraphic and paleoceanographic significance. Palaeogeogr Palaeoclimatol Palaeoecol 210:187–214. doi: 10.1016/j.palaeo.2004.02.043 CrossRefGoogle Scholar
  31. Marshall JD, Brenchley PJ, Mason P, Wolff GA, Astini RA, Hints L, Meidla T (1997) Global carbon isotopic events associated with mass extinction and glaciation in the Late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol 132:195–210. doi: 10.1016/S0031-0182(97)00063-1 CrossRefGoogle Scholar
  32. Meidla T, Ainsaar L, Backman J, Dronov A, Holmer L, Sturesson U (2004) Middle-Upper Ordovician carbon isotope record from Västergötland (Sweden) and East Baltic. In: Hints O, Ainsaar L (eds) WOGOGOB 2004 Conference materials. Tartu University Press, Tartu, pp 67–68Google Scholar
  33. Nielsen AT (2004) Ordovician sea level changes: a Baltoscandian perspective. In: Webby BD, Paris F, Droser M, Percival I (eds) The Great Ordovician diversification event. Columbia University Press, New York, pp 84–93Google Scholar
  34. Owen AW, Bruton DL, Bockelie JF, Bockelie TG (1990) The Ordovician successions of the Oslo Region, Norway. Norges geologiske undersokelse, Spec Publ 4, p 54Google Scholar
  35. Patzkowsky ME, Slupik LM, Arthur MA, Pancost RD, Freeman KH (1997) Late Middle Ordovician environmental change and extinction: Harbinger of the Late Ordovician or continuation of Cambrian patterns? Geology 25:911–914. doi: 10.1130/0091-7613(1997)025<0911:LMOECA>2.3.CO;2 CrossRefGoogle Scholar
  36. Reimold WU, Kelley SP, Sherlock SC, Henkel H, Koeberl C (2005) Laser Argon dating of melt breccias from the Siljan impact structure: implications for possible relationship to Late Devonian extinction events. Meteorit Planet Sci 40:591–607CrossRefGoogle Scholar
  37. Riding R (2002) Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth Sci Rev 58:163–231. doi: 10.1016/S0012-8252(01)00089-7 CrossRefGoogle Scholar
  38. Saltzman MR, Bergström SM, Huff WD, Kolata DK (2003) Conodont and graptolite biostratigraphy and the Ordovician (Early Chatfieldian, Middle Caradocian) δ13C excursion in North America and Baltoscandia: implications for the interpretation of the relations between Millbrig and Kinnekulle K-bentonites. In: Proceedings of the 9th international symposium on the Ordovician System. San Juan, Argentina, pp 137–142Google Scholar
  39. Saltzman MR, Young SA (2005) Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from Laurentia. Geology 33:109–112. doi: 10.1130/G21219.1 CrossRefGoogle Scholar
  40. Schlager W (1991) Depositional bias and environmental change–important factors in sequence stratigraphy. Sediment Geol 70:109–130. doi: 10.1016/0037-0738(91)90138-4 CrossRefGoogle Scholar
  41. Schmitz B, Bergström SM (2007) Chemostratigraphy in the Swedish Upper Ordovician: regional significance of the Hirnantian δ13C excursion (HICE) in the Boda Limestone of the Siljan region. GFF 129:133–140CrossRefGoogle Scholar
  42. Stouge S (2004) Ordovician siliciclastics and carbonates of Öland, Sweden. In: Munnecke A, Servais T, Schulbert C (eds) International Symposium on “Early Palaeozoic Palaeogeography and Palaeolimate” (IGCP 503), 1–3 September 2004, Erlangen, Germany. Erlanger Geol Abh, SB 5:91–111Google Scholar
  43. Thorslund P (1932) Om sprickfyllnaderna i kalkreven inom Siljansområdet. Geol Foren Stockh Forh 54:147–164Google Scholar
  44. Thorslund P (1935) Über den Brachiopodenschiefer und den jüngeren Riffkalk in Dalarne. Nova Acta Regio Societas Sci Upsaliensis 4(9):1–50Google Scholar
  45. Thorslund P, Jaanusson V (1960) The Siljan district, road-log. In: Thorslund P, Jaanusson V (eds) The Cambrian, Ordovician, and Silurian in Västergötland, Närke, Dalarna, and Jämtland, 27–35, International geological congress XXI session, Guide to excursions NOS A23 and C18Google Scholar
  46. Tobin KJ, Bergström SM, De La Garza P (2005) A mid-Caradocian (453 Ma) drawdown in atmospheric pCO2 without ice sheet development? Palaeogeogr Palaeoclimatol Palaeoecol 226:187–204. doi: 10.1016/j.palaeo.2005.05.010 CrossRefGoogle Scholar
  47. Young SA, Saltzman MR, Bergström SM (2005) Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in eastern and central North America: regional expression of a perturbation on the global carbon cycle. Palaeogeogr Palaeoclimatol Palaeoecol 222:53–76. doi: 10.1016/j.palaeo.2005.03.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mikael Calner
    • 1
    Email author
  • Oliver Lehnert
    • 2
  • Michael Joachimski
    • 2
  1. 1.GeoBiosphere Science CentreLund UniversityLundSweden
  2. 2.GeoCenter Northern BavariaUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations