, Volume 55, Issue 4, pp 489–500 | Cite as

Mineralogy of Arctic bryozoan skeletons in a global context

  • P. KuklinskiEmail author
  • P. D. Taylor
Original Article


Bryozoans are major carbonate producers in some ancient and Recent benthic environments, including parts of the Arctic Ocean. Seventy-six species of bryozoans from within the Arctic Circle have been studied using XRD to determine their carbonate mineralogies and the Mg content of the calcite. The majority of species were found to be calcitic, only four having bimineralic skeletons that combined calcite and aragonite, and none being entirely aragonitic. In almost all species, the calcite was of the low- (<4 mol% MgCO3) or intermediate-Mg (4–11.99 mol% MgCO3) varieties. Previous regional studies of bryozoan biomineralogy have found higher proportions of bimineralic and/or aragonitic species in New Zealand and the Mediterranean, with a greater number of calcitic species employing intermediate- and high-Mg calcite. The Antarctic bryozoan fauna, however, has a similar mineralogical composition to the Arctic. The lesser solubility of low-Mg calcite compared to both Mg calcite and aragonite in cold polar waters is most likely responsible for this latitudinal pattern. However, it is unknown to what extent environmental factors drive the pattern directly through eliciting an ecophenotypic response from the bryozoans concerned or the pattern reflects genetic adaptations by particular bryozoan clades.


Carbonate mineralogy Arctic Bryozoans 



We would like to thank Caroline Kirk and Gordon Cressey for help with XRD and mineralogical data analysis. The authors would also like to thank Bjorn Berning and an anonymous reviewer for comments leading to an improved manuscript. The study has been completed thanks to the financial support to from the EU programmes BRYOARC and DYNARC, as well as a grant from the Polish Ministry of Science and Higher Education (NN304 270434) to PK.


  1. Anderson LG, Bjork G, Holby O, Jones EP, Kattner G, Koltermann KP, Lijeblad B, Lindegren R, Rudels B, Swift J (1994) Water masses and circulation in the Eurasian Basin: results from the Oden 91 expedition. J Geophys Res 99:3273–3283. doi: 10.1029/93JC02977 CrossRefGoogle Scholar
  2. Andruleit H, Freiwald A, Schäfer P (1996) Bioclastic carbonate sediments on the southwestern Svalbard shelf. Mar Geol 134:163–182. doi: 10.1016/0025-3227(96)00044-8 CrossRefGoogle Scholar
  3. Bader B, Schäfer P (2005) Bryozoans in polar latitudes: Arctic and Antarctic bryozoan communities and facies. Denisia 16:263–282Google Scholar
  4. Bayer FM, Macintyre IG (2001) The mineral component of the axia and holdfasts of some gorgonacean octocorals (Coelenterata: Anthozoa), with special reference to the family Gorgoniidae. Proc Biol Soc Wash 114:309–345Google Scholar
  5. Bone Y, James NP (1993) Bryozoans as carbonate sediment producers on the cool Lacepede Shelf, southern Australia. Sediment Geol 86:247–271. doi: 10.1016/0037-0738(93)90025-Z CrossRefGoogle Scholar
  6. Borisenko YA, Gontar VI (1991) Skeletal composition of cold-water bryozoans (in Russian). Biol Morya 1:80–90Google Scholar
  7. Cairns SD, Macintyre IG (1992) Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios 7:96–107. doi: 10.2307/3514799 CrossRefGoogle Scholar
  8. Carter JG (1980) Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 69–114Google Scholar
  9. Carter JG, Barrera E, Tevesz MJS (1998) Thermal potential and mineralogical evolution in the Bivalvia (Mollusca). J Paleontol 72:991–1010Google Scholar
  10. Chave KE (1954) Aspects of the biogeochemistry of magnesium. 1. Calcareous marine organisms. J Geol 62:266–283CrossRefGoogle Scholar
  11. Checa AG, Jimenez-Lopez C, Rodriguez-Navarro A, Machado JP (2007) Precipitation of aragonite by calcite bivalves in Mg-enriched marine waters. Mar Biol (Berl) 150:819–827. doi: 10.1007/s00227-006-0411-4 CrossRefGoogle Scholar
  12. Clarke A (1998) Temperature and energetics: an introduction to cold ocean physiology. In: Pörtner H-O, Playle RC (eds) Cold ocean physiology. Society for Experimental Biology Seminar Series. Cambridge University Press, Cambridge, pp 3–30Google Scholar
  13. Cohen AL, Branch GM (1992) Environmentally controlled variation in the structure and mineralogy of Patella granularis shells from the coast of southern Africa: implications for palaeotemperature assessments. Palaeogeogr Palaeoclimatol Palaeoecol 91:49–57. doi: 10.1016/0031-0182(92)90031-Y CrossRefGoogle Scholar
  14. Davis KJ, Dove PM, De Yoreo JJ (2000) The role of Mg2+ as an impurity in calcite growth. Science 290:1134–1137. doi: 10.1126/science.290.5494.1134 CrossRefGoogle Scholar
  15. Dodd JR (1967) Magnesium and strontium in calcareous skeletons: a review. J Paleontol 41:1313–1329Google Scholar
  16. Ettensohn FR et al (1986) Paleoecology and paleoenvironments of the bryozoan-rich Sulphur Well Member, Lexington Limestone (Middle Ordovician), central Kentucky. Southeast Geol 26:199–219Google Scholar
  17. Fabry VJ (2008) Marine calcifiers in a high-CO2 ocean. Science 320:1020–1022. doi: 10.1126/science.1157130 CrossRefGoogle Scholar
  18. Gray JS (2002) Species richness of marine soft sediments. Mar Ecol Prog Ser 244:285–297. doi: 10.3354/meps244285 CrossRefGoogle Scholar
  19. Harper EM (2000) Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? J Zool (Lond) 251:179–186. doi: 10.1111/j.1469-7998.2000.tb00602.x CrossRefGoogle Scholar
  20. Henrich R, Hartmann M, Reitner J, Schäfer P, Freiwald A, Steinmetz S, Dietrich P, Thiede J (1992) Facies belts and communities of the Arctic Vesterisbanken Seamount (Central Greenland Sea). Facies 27:71–104. doi: 10.1007/BF02536805 CrossRefGoogle Scholar
  21. IPCC (2007) Climate change 2007. The intergovermental panel on climate change 4th assessment report. Last accessed February 9, 2009,
  22. James NP, Choquette PW (1983) Diagenesis 9. Limestones, the meteoric diagenetic environment. Geosci Can 11:161–194Google Scholar
  23. James NP, Clarke JDA (eds) (1997) Cool-water carbonates. SEPM Special Publication, vol 56, pp 1–440Google Scholar
  24. James NP, Bone Y, Kyser TK (2005) Where has all the aragonite gone? Mineralogy of Holocene neritic cool-water carbonates, southern Australia. J Sediment Res 75:454–463. doi: 10.2110/jsr.2005.035 CrossRefGoogle Scholar
  25. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120. doi: 10.1126/science.284.5411.118 CrossRefGoogle Scholar
  26. Kluge GA (1975) Bryozoa of the northern seas of the USSR. Amerind Publishing Co, New DelhiGoogle Scholar
  27. Kuklinski P, Porter J (2004) Alcyonidium disciforme Smitt, 1871: an exceptional Arctic bryozoan. J Mar Biol Assoc U K 84:267–275. doi: 10.1017/S0025315404009130h CrossRefGoogle Scholar
  28. Kuklinski P, Taylor PD (2006) Unique life history strategy in a successful Arctic bryozoan, Harmeria scutulata. J Mar Biol Assoc U K 86:1035–1046. doi: 10.1017/S0025315406014019 CrossRefGoogle Scholar
  29. Kuklinski P, Taylor PD (2008) Are bryozoans adapted for living in the Arctic? In: Hageman SJ, Key MM, Winston JE (eds) Bryozoan Studies 2007, Proceedings of the 14th International Bryozoology Association Conference, Boone, North Carolina, 1–8 July 2007, Virginia Museum of Natural History, Memoir, Special Publication Number, vol 15, pp 101–110Google Scholar
  30. Loeng H (1991) Features of the physical oceanographic conditions of the Barents Sea. In: Sakshaug E, Hopkins CCE, Oritsland NA (eds) Proceedings of the Pro Mare Symposium on Polar Marine Ecology, Trondheim, 12–16 May 1990, Polar Res, vol 10, pp 5–18Google Scholar
  31. Lombardi C, Cocito S, Hiscock K, Occhipinti-Ambrogi A, Setti M, Taylor PD (2008) Influence of seawater temperature on growth bands, mineralogy and carbonate production in a bioconstructional bryozoan. Facies 54:333–342. doi: 10.1007/s10347-008-0143-7 CrossRefGoogle Scholar
  32. Lowenstam HA (1954a) Environmental relations of modification compositions of certain carbonate secreting marine invertebrates. Proc Natl Acad Sci USA 40:39–48. doi: 10.1073/pnas.40.1.39 CrossRefGoogle Scholar
  33. Lowenstam HA (1954b) Factors affecting the aragonite:calcite ratios in carbonate secreting marine organisms. J Geol 62:284–322CrossRefGoogle Scholar
  34. Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799Google Scholar
  35. Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60:3–12. doi: 10.1016/0037-0738(88)90108-X CrossRefGoogle Scholar
  36. Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HL, Comiso JC (1999) Arctic sea ice extents, areas, and trends, 1978–1996. J Geophys Res 104:20837–20856. doi: 10.1029/1999JC900082 CrossRefGoogle Scholar
  37. Poluzzi A, Sartori R (1975) Report on the carbonate mineralogy of Bryozoa. Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon, Hors Srie, vol 3, pp 193–210Google Scholar
  38. Pray LC (1958) Fenestrate bryozoan core facies, Mississippian bioherms, southwestern United States. J Sediment Petrol 28:261–273Google Scholar
  39. Raven FRS, et al. (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society Report 12/05, 60 ppGoogle Scholar
  40. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367. doi: 10.1038/35030078 CrossRefGoogle Scholar
  41. Ries JB (2005) Aragonite production in calcite seas: effect of seawater Mg/Ca ratio on calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology 31:445–458. doi: 10.1666/0094-8373(2005)031[0445:APICSE]2.0.CO;2 CrossRefGoogle Scholar
  42. Ries JB, Stanley SM, Hardie LA (2006) Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geology 34:525–528. doi: 10.1130/G22600.1 CrossRefGoogle Scholar
  43. Rogala B, James NP, Reid CM (2007) Deposition of polar carbonates during interglacial highstands on an early Permian shelf, Tasmania. J Sediment Res 77:587–606. doi: 10.2110/jsr.2007.060 CrossRefGoogle Scholar
  44. Rucker JB, Carver RE (1969) A survey of the carbonate mineralogy of cheilostome Bryozoa. J Paleontol 43:791–799Google Scholar
  45. Rudels B, Jones EP, Anderson LG, Kattner G (1994) On the intermediate depth waters of the Arctic Ocean. In: Johannessen OM, Muench RD, Overland JE (eds) The Polar Oceans and their role in shaping the global environment. Am Geophys Union, Washington, DC, pp 33–46Google Scholar
  46. Ryland JS (1970) Bryozoans. Hutchinson, LondonGoogle Scholar
  47. Sakshaug E (2003) Primary and secondary production in the Arctic seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin Heidelberg New York, pp 57–81Google Scholar
  48. Schäfer P, Bader B (2008) Geochemical composition and variability in the skeleton of the bryozoans Cellaria sinuosa (Hassall): biological versus environmental control. In: Hageman SJ, Key MM, Winston JE (eds), Bryozoan Studies 2007, Proceedings of the 14th International Bryozoology Association Conference, Boone, North Carolina, 1–8 July 2007, Virginia Museum of Natural History, Memoir, Special Publication Number, vol 15, pp 269–279Google Scholar
  49. Schiermeier Q (2007) The new face of the Arctic. Nature 446:133–135. doi: 10.1038/446133a CrossRefGoogle Scholar
  50. Smith AM (2007) Age, growth and carbonate production by erect rigid bryozoans in Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 256:86–98. doi: 10.1016/j.palaeo.2007.09.007 CrossRefGoogle Scholar
  51. Smith AM, Nelson CS (1993) Mineralogical, carbonate geochemical, and diagenetic data for modern New Zealand bryozoans. Department of Earth Sciences, University of Waikato, Occasional Report No 17, pp 1–71Google Scholar
  52. Smith AM, Nelson CS, Spencer GH (1998) Skeletal carbonate mineralogy of New Zealand bryozoans. Mar Geol 151:27–46. doi: 10.1016/S0025-3227(98)00055-3 CrossRefGoogle Scholar
  53. Smith AM, Key MM, Gordon DP (2006) Skeletal mineralogy of bryozoans: taxonomic and temporal patterns. Earth Sci Rev 78:287–306. doi: 10.1016/j.earscirev.2006.06.001 CrossRefGoogle Scholar
  54. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19. doi: 10.1016/S0031-0182(98)00109-6 CrossRefGoogle Scholar
  55. Taviani M, Reid DE, Anderson JB (1993) Skeletal and isotopic composition and paleoclimatic significance of Late Pleistocene carbonates, Ross Sea, Antarctica. J Sediment Petrol 63:84–90Google Scholar
  56. Taylor JD, Reid DG (1990) Shell microstructure and mineralogy of the Littorinidae: ecological and evolutionary significance. Hydrobiologia 193:199–215. doi: 10.1007/BF00028077 CrossRefGoogle Scholar
  57. Taylor PD, Allison PA (1998) Bryozoan carbonates in space and time. Geology 26:459–462. doi: 10.1130/0091-7613(1998)026<0459:BCTTAS>2.3.CO;2 CrossRefGoogle Scholar
  58. Thiel H, Pörtner HO, Arntz WE (1996) Marine life at low temperatures—a comparison of polar and deep-sea characteristics. In: Uiblein F, Ott J, Stachowitsch M (eds) Deep-sea and extreme shallow-water habitats: affinities and adaptations. Biosystematics and Ecology Series, vol 11, pp 183–219Google Scholar
  59. Wass RE, Conolly JR, MacIntyre RJ (1970) Bryozoan carbonate sand continuous along southern Australia. Mar Geol 9:63–73. doi: 10.1016/0025-3227(70)90080-0 CrossRefGoogle Scholar
  60. Wejnert KE, Smith AM (2008) Within-colony variation in skeletal mineralogy of Adeonellopsis sp. (Cheilostomata: Bryozoa) from New Zealand. NZ J Mar Freshwater Sci 42:389–395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of OceanologyPolish Academy of SciencesSopotPoland
  2. 2.Natural History MuseumLondonUK

Personalised recommendations