Facies

, Volume 55, Issue 1, pp 103–114

Redox conditions during sedimentation of the Middle Jurassic (Upper Bajocian–Bathonian) clays of the Polish Jura (south-central Poland)

  • Michał Zatoń
  • Leszek Marynowski
  • Patrycja Szczepanik
  • David P. G. Bond
  • Paul B. Wignall
Original Article

Abstract

Depositional redox conditions of the uppermost Bajocian–Bathonian (Middle Jurassic) ore-bearing clays of the Gnaszyn/Kawodrza area in the Polish Jura have been determined using an integrated geochemical (Th/U and U/Th ratios, degree of pyritisation (DOP), sulphur stable isotopes, biomarker analysis) and petrographic approach (measurements of pyrite framboid diameters, and microfacies analysis). The Th/U and U/Th ratios indicate that oxic conditions prevailed on the sea-floor during this interval, and 34S isotopes suggest open-system conditions. DOP values, however, are rather scattered, and may reflect oxic, dysoxic, or anoxic conditions. We consider that the DOP values result from reducing conditions within the sediment and the chemistry of the pore-waters, rather than true sea-floor redox conditions. Pyrite framboid populations also indicate that dysoxic conditions prevailed within the sediment, beneath an oxygenated water column. Biomarker data did not provide any evidence of water column stratification or anoxia during sedimentation of the Middle Jurassic clays.

Keywords

Redox Geochemistry Jurassic Framboids Organic matter Poland 

References

  1. Barski M, Dembicz K, Praszkier T (2004) Biostratygrafia i paleośrodowisko środkowej jury z kamieniołomu Ogrodzieniec. Tomy Juraj 2:61–68Google Scholar
  2. Błaszyk J (1967) Middle Jurassic ostracods of the Częstochowa region (Poland). Acta Pal Polon 12:4–75Google Scholar
  3. Boczarowski A (2004) Pedicellarie ze środkowojurajskich iłów rudonośnych i ich znaczenie w strategii życiowej jeżowców. Tomy Juraj 2:141–150Google Scholar
  4. Bojesen-Koefoed JA (1996) The Polish Middle to Late Jurassic epicratonic basin, stratigraphy and basin history organic geochemical screening analysis of outcrop samples. Geus Rapport 1996(81):1–18Google Scholar
  5. Bond DPG, Wignall PB (2005) Evidence for late Devonian (Kellwasser) anoxic events in the Great Basin, western United States. In: Over DJ, Morrow JR, Wignall PB (eds) Understanding late Devonian and Permian-Triassic biotic and climatic events: toward an integrated approach. Dev Pal Strat vol 20, pp 225–262Google Scholar
  6. Dadlez R (1989) Epikontynentalne baseny permu i mezozoiku w Polsce. Kwart Geol 33:175–198Google Scholar
  7. Dadlez R (1997) Epicontinental basins in Poland: Devonian to Cretaceous––relationships between the crystalline basement and sedimentary infill. Geol Q 41:419–432Google Scholar
  8. Dayczak-Calikowska K, Moryc W (1988) Rozwój basenu sedymentacyjnego i paleotektonika jury środkowej na obszarze Polski. Kwart Geol 32:117–136Google Scholar
  9. Dayczak-Calikowska K, Kopik J, Marcinkiewicz T (1997) Middle Jurassic. In: Marek S, Pajchlowa M (eds) Epikontynentalny perm i mezozoik w Polsce. Pr Państ Inst Geol, vol 153, pp 236–282Google Scholar
  10. Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications, premiere partie. Rev Inst Fr Pet 40:563–579Google Scholar
  11. Feldman-Olszewska A (1997) Depositional architecture of the Polish epicontinental Middle Jurassic basin. Geol Q 41:491–508Google Scholar
  12. Flügel E (1982) Microfacies analysis of limestone. Springer, BerlinGoogle Scholar
  13. Gedl P, Kaim A, Boczarowski A, Kędzierski M, Smoleń J, Szczepanik P et al (2003) Rekonstrukcja paleośrodowiska sedymentacji środkowojurajskich iłów rudonośnych Gnaszyna (Częstochowa)—wyniki wstępne. Tomy Juraj 1:19–27Google Scholar
  14. Golonka J (2000) Cambrian––Neogene plate tectonic maps. Wyd Uniw Jagiel, KrakówGoogle Scholar
  15. Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem Geol 99:65–82, doi:10.1016/0009-2541(92)90031-Y CrossRefGoogle Scholar
  16. Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129, doi:10.1016/0009-2541(94)90085-X CrossRefGoogle Scholar
  17. Kaim A (2004) The evolution of conch ontogeny in Mesozoic open marine gastropods. Palaeont Polon 62:1–183Google Scholar
  18. Kenig F, Hudson JD, Sinninghe Damsté JS et al (2004) Intermittent euxinia: reconcilation of a Jurassic black shale with its biofacies. Geology 32:421–424, doi:10.1130/G20356.1 CrossRefGoogle Scholar
  19. Kopik J (1998) Jura dolna i środkowa północno-wschodniego obrzeżenia Górnosląskiego Zagłębia Węglowego. Biul Panstw Inst Geol 378:67–120Google Scholar
  20. Kopik J (2006) Bathonian ammonites of the families Sphaeroceratidae Buckman and Tulitidae Buckman from the Polish Jura Chain (southern Poland). Pol Geol Inst Spec Pap 21:1–68Google Scholar
  21. Krobicki M, Müller P, Zatoń M (2005) Middle and Upper Jurassic brachyuran crabs––phylogenetic and palaeoenvironmental significance of their early evolutionary stage. Geol Soc Am Abstr Programs 37:187Google Scholar
  22. Krobicki M, Zatoń M (2008) Middle and Late Jurassic roots of brachyuran crabs: palaeoenvironmental distribution during their early evolution. Palaeogeogr Palaeoclimatol Palaeoecol 263:30–43, doi:10.1016/j.palaeo.2008.01.025 CrossRefGoogle Scholar
  23. Kulicki C, Szaniawski H (1972) Cephalopod arm hooks from the Jurassic of Poland. Acta Pal Polon 17:379–419Google Scholar
  24. Maeda H, Seilacher A (1996) Ammonoid taphonomy. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Topics in Geobiogeology 13. Plenum Press, New York, pp 544–578Google Scholar
  25. Majewski W (2000) Middle Jurassic concretions from Częstochowa (Poland) as indicators of sedimentation rates. Acta Geol Polon 50:431–439Google Scholar
  26. Marynowski L, Zatoń M, Jędrysek M-O et al (2005) Source and diagenesis of organic matter from the Middle Jurassic epicontinental basin of Poland. Organic geochemistry: challenges for the 21st century. Seville 1:574–575Google Scholar
  27. Marynowski L, Zatoń M, Simoneit BRT et al (2007a) Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Appl Geochem 22:2456–2485, doi:10.1016/j.apgeochem.2007.06.015 CrossRefGoogle Scholar
  28. Marynowski L, Otto A, Zatoń M et al (2007b) Biomolecules preserved in ca. 168-million-year-old fossil conifer wood. Naturwissenschaften 94:228–236, doi:10.1007/s00114-006-0179-x CrossRefGoogle Scholar
  29. Marynowski L, Rakociński M, Zatoń M (2007c) Middle Famennian (Late Devonian) interval with pyritized fauna from the Holy Cross Mountains (Poland): organic geochemistry and pyrite framboid diameter study. Geochem J 41:187–200Google Scholar
  30. Marynowski L, Philippe M, Zatoń M et al (2008a) Systematic relationships of the Mesozoic wood genus Xenoxylon: an integrative biomolecular and palaeobotanical approach. N Jahrb Geol Pal Abh 247:177–189CrossRefGoogle Scholar
  31. Marynowski L, Zatoń M, Karwowski Ł (2008b) Elary diagenetic conditions during formation of the Callovian (Middle Jurassic) carbonate concretions from Łuków (eastern Poland): evidence from organic geochemistry, pyrite framboid diameters and petrographic study. N Jahrb Geol Pal Abh 247:191–208CrossRefGoogle Scholar
  32. Matyja BA, Wierzbowski A (1998) Palaeogeographic evolution of the Middle-Upper Jurassic of Poland. In: Poulsen NE, Bojesen-Koefoed J, Drewniak A et al (eds) Mellem-Øvre Jura i Polen. EEP-1995 projekt: Det polske Mellem-Øvre Epikratoniske Bassin, Stratigrafi, Facies og Bassin Historie. Program Østeuropa. Danmarks og Grønlands Geologiske Undersøgelse Rapport 1998/14, pp 161–179Google Scholar
  33. Matyja BA, Wierzbowski A (2000) Ammonites and stratigraphy of the uppermost Bajocian and Lower Bathonian between Częstochowa and Wieluń, Central Poland. Acta Geol Polon 50:191–209Google Scholar
  34. Matyja BA, Wierzbowski A (2001) Palaeogeographical distribution of Early Bathonian ammonites of the Asphinctites-Polysphinctites group. Hantkeniana 3:89–103Google Scholar
  35. Matyja BA, Wierzbowski A (2003) Biostratygrafia amonitowa formacji częstochowskich iłów rudonośnych (najwyższy bajos—górny baton) z odsłonięć w Częstochowie. Tomy Juraj 1:3–6Google Scholar
  36. Matyja BA, Wierzbowski A, Gedl P, et al. (2006a) Stop B1.5––Sowa’s and Glinski’s clay pits (uppermost Bajocian-lowermost Bathonian). In: Wierzbowski A, Aubrecht R, Golonka J et al (eds) Jurassic of Poland and adjacent Slovakian Carpathians. Field trip guidebook of 7th international congress on the Jurassic system Poland, Kraków, September 6–18, 2006, pp 149–152Google Scholar
  37. Matyja BA, Wierzbowski A, Gedl P, et al. (2006b) Stop B1.6––Leszczyński’s clay pit (Lower Bathonian). In: Wierzbowski A, Aubrecht R, Golonka J et al (eds) Jurassic of Poland and adjacent Slovakian Carpathians. Field trip guidebook of 7th international congress on the Jurassic system Poland, Kraków, September 6–18, 2006, pp 152–154Google Scholar
  38. Matyja BA, Wierzbowski A, Gedl P et al (2006c) Stop B1.7––Gnaszyn clay pit (Middle Bathonian-lowermost Upper Bathonian). In: Wierzbowski A, Aubrecht R, Golonka J et al (eds) Jurassic of Poland and adjacent Slovakian Carpathians. Field trip guidebook of 7th international congress on the Jurassic system Poland, Kraków, September 6–18, 2006, pp 154–157Google Scholar
  39. Myers KJ, Wignall PB (1987) Understanding Jurassic organic-rich mudrocks––new concepts using gamma-ray spectrometry and palaeontology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. In: Legget JK, Zuffa GG (eds) Marine clastic sedimentology. Graham & Trotman, London, pp 172–189Google Scholar
  40. Olempska E, Błaszyk J (2001) A boreal ostracod assemblage from the Callovian of the Łuków area, Poland. Acta Palaeontol Pol 46:553–582Google Scholar
  41. Poulsen NE, Bojesen-Koefoed J, Drewniak A et al (eds) (1998) Mellem-Øvre Jura i Polen. EEP-1995 projekt: Det polske Mellem-Øvre Epikratoniske Bassin, Stratigrafi, Facies og Bassin Historie. Program Østeuropa. Danmarks og Grønlands Geologiske Undersøgelse Rapport 1998/14Google Scholar
  42. Poulsen NS (1998) Upper Bajocian to Callovian (Jurassic) dinoflagellate cysts from central Poland. Acta Geol Polon 48:237–245Google Scholar
  43. Pugaczewska H (1986) Bivalvia of the Polish Middle Jurassic and remarks on their palaeoecology. Acta Pal Polon 31:27–83Google Scholar
  44. Racki G, Piechota A, Bond D et al (2004) Geochemical and ecological aspects of lower Frasnian pyrite-ammonoid level at Kostomłoty (Holy Cross Mountains, Poland). Geol Q 48:267–282Google Scholar
  45. Raiswell R, Berner RA (1985a) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724Google Scholar
  46. Raiswell R, Berner RA (1985b) Pyrite and organic matter in Phanerozoic normal marine shales. Geochim Cosmochim Acta 50:1967–1976, doi:10.1016/0016-7037(86)90252-8 CrossRefGoogle Scholar
  47. Raiswell R, Buckley F, Berner RA et al (1988) Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J Sediment Res 58:812–819Google Scholar
  48. Raiswell R, Newton R, Wignall PB (2001) An indicator of water-column anoxia: resolution of biofacies variations in the Kimmeridge Clay (Upper Jurassic, U.K.). J Sediment Res 71:286–294CrossRefGoogle Scholar
  49. Roychoudhury AN, Kostka JE, Cappelen PV (2003) Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuar Coast Shelf Sci 57:1183–1193, doi:10.1016/S0272-7714(03)00058-1 CrossRefGoogle Scholar
  50. Röhl H-J, Schmid-Röhl A, Oschmann W et al (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52, doi:10.1016/S0031-0182(00)00152-8 CrossRefGoogle Scholar
  51. Różycki SZ (1953) Górny dogger i dolny malm Jury Krakowsko-Częstochowskiej. Pr Inst Geol 17:1–420Google Scholar
  52. Salamon MA, Zatoń M (2007) A diverse crinoid fauna from the Middle Jurassic (Upper Bajocian–Callovian of the Polish Jura Chain and Holy Cross Mountains (south-central Poland). Swiss J Geosci 100:153–164, doi:10.1007/s00015-007-1207-3 CrossRefGoogle Scholar
  53. Seilacher A, Andalib F, Dietl G et al (1976) Preservational history of compressed Jurassic ammonites from southern Germany. N Jahrb Geol Pal Abh 152:307–356Google Scholar
  54. Shen W, Linc Y, Hud L et al (2007) Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: evidence for dysoxic deposition. Palaeogeogr Palaeoclimatol Palaeoecol 253:323–331, doi:10.1016/j.palaeo.2007.06.005 CrossRefGoogle Scholar
  55. Smoleń J (2006) Palaeoenvironmental significance of the foraminiferal assemblages from the Middle Jurassic deposits of the Częstochowa area. Vol Jur 4:136–137Google Scholar
  56. Strauss H (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr Palaeoclimatol Palaeoecol 132:97–118, doi:10.1016/S0031-0182(97)00067-9 CrossRefGoogle Scholar
  57. Szaniawski H (1974) Some Mesozoic scolecodonts congeneric with recent forms. Acta Pal Polon 19:179–199Google Scholar
  58. Szczepanik P, Sawłowicz Z (2005) Pyritization of microfossils: crinoid remains from the Middle Jurassic of Ogrodzieniec (Kraków-Częstochowa Upland, Poland). Stud Geol Pol 124:37–52Google Scholar
  59. Szczepanik P, Witkowska M, Sawłowicz Z (2007) Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): interpretation of the depositional redox conditions. Geol Q 51:57–66Google Scholar
  60. Tanabe K, Inazumi A, Tamahama K et al (1984) Taphonomy of half and compressed ammonites from the Lower Jurassic black shales of the Toyora area, West Japan. Palaeogeogr Palaeoclimatol Palaeoecol 47:329–346, doi:10.1016/0031-0182(84)90101-9 CrossRefGoogle Scholar
  61. Tyszka J (1994) Response of middle Jurassic benthic foraminiferal morphogroups to dysoxic/anoxic conditions in the Pieniny Klippen Basin, Polish Carpathians. Palaeogeogr Palaeoclimatol Palaeoecol 110:55–81, doi:10.1016/0031-0182(94)90110-4 CrossRefGoogle Scholar
  62. Voigt E (1968) Über-Hiatus-Konkretion (dargestellt am Beispielen aus dem Lias). Geolog Rundsch 58:281–296, doi:10.1007/BF01820609 CrossRefGoogle Scholar
  63. Wierzbowski H, Joachimski M (2007) Reconstruction of late Bajocian–Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland). Palaeogeogr Palaeoclimatol Palaeoecol 254:523–540, doi:10.1016/j.palaeo.2007.07.010 CrossRefGoogle Scholar
  64. Wignall PB (1993) Distinguishing between oxygen and substrate control in fossil benthic assemblages. J Geol Soc Lond 150:193–196CrossRefGoogle Scholar
  65. Wignall PB (1994) Black shales. Clarendon Press, OxfordGoogle Scholar
  66. Wignall PB, Myers KJ (1988) Interpreting benthic oxygen levels in mudrocks: a new approach. Geology 16:452–455, doi:10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2CrossRefGoogle Scholar
  67. Wignall PB, Newton R (1998) Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am J Sci 298:537–552Google Scholar
  68. Wignall PB, Twitchett RJ (2002) Permian-Triassic sedimentology of Jameson Land, East Greenland: incised submarine channels in an anoxic basin. J Geol Soc Lond 159:691–703, doi:10.1144/0016-764900-120 CrossRefGoogle Scholar
  69. Wignall PB, Newton R, Brookfield ME (2005) Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeogr Palaeoclimatol Palaeoecol 216:183–188, doi:10.1016/j.palaeo.2004.10.009 CrossRefGoogle Scholar
  70. Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912, doi:10.1016/0016-7037(96)00209-8 CrossRefGoogle Scholar
  71. Wiśniewska-Żelichowska M (1978) Środkowojurajskie ramienionogi z rzędu Rhynchonellida na obszarze częstochowsko-wieluńskim i zawierciańsko-olkuskim. Biul Inst Geol 304:65–156Google Scholar
  72. Zatoń M (2007a) Amonity z iłów rudonośnych (bajos-baton) Jury Polskiej. Unpublished PhD ThesisGoogle Scholar
  73. Zatoń M (2007b) Tulites cadus Buckman, 1921 (Ammonoidea) from the Middle Bathonian of the Polish Jura and its biostratigraphic significance. N Jahrb Geol Pal Abh 243:191–199CrossRefGoogle Scholar
  74. Zatoń M, Salamon MA (2008) Durophagous predation on Middle Jurassic molluscs, as evidenced from shell fragmentation. Palaeontology 51:63–70Google Scholar
  75. Zatoń M, Marynowski L (2004) Konzentrat-Lagerstätte–type carbonate concretions from the uppermost Bajocian (Middle Jurassic) of the Częstochowa area, south-central Poland. Geol Q 48:339–350Google Scholar
  76. Zatoń M, Marynowski L (2006) Ammonite fauna from uppermost Bajocian (Middle Jurassic) calcitic concretions from the Polish Jura––biogeographical and taphonomical implications. Geobios 39:426–442, doi:10.1016/j.geobios.2005.02.001 CrossRefGoogle Scholar
  77. Zatoń M, Barbacka M, Marynowski L et al (2006a) Sagenopteris (Caytoniales) with its possible preserved biomarkers from the Bathonian of the Polish Jura, south-central Poland. N Jahrb Geol Pal Monat 7:385–402Google Scholar
  78. Zatoń M, Marynowski L, Bzowska G (2006b) Konkrecje hiatusowe z iłów rudonośnych Wyżyny Krakowsko-Częstochowskiej. Przeg Geol 54:131–138Google Scholar
  79. Zatoń M, Villier L, Salamon MA (2007) Signs of predation in the Middle Jurassic clays of south-central Poland––evidence from echinoderm taphonomy. Lethaia 40:139–151Google Scholar
  80. Zatoń M, Rakociński M, Marynowski L (2008) Framboidy pirytowe jako wskaźnik paleośrodowiska. Przeg Geol 56:158–164Google Scholar
  81. Ziegler PA (1990) Geological atlas of western and central Europe. Shel Internationale Petroleum Maatschappij BVGoogle Scholar
  82. Znosko J (1960) Tektonika obszaru częstochowskiego. Przeg Geol 8:418–424Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Michał Zatoń
    • 1
  • Leszek Marynowski
    • 1
  • Patrycja Szczepanik
    • 2
  • David P. G. Bond
    • 3
  • Paul B. Wignall
    • 3
  1. 1.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland
  2. 2.Institute of Geological SciencesJagiellonian UniversityKrakówPoland
  3. 3.School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations