, Volume 54, Issue 3, pp 403–415

Slope breccias colonized by bivalves and serpulids during the Middle Jurassic (Subbetic, SE Spain)

  • Vicente Navarro
  • Matías Reolid
  • J. Miguel Molina
  • Pedro A. Ruiz-Ortiz
Original Article


The Middle Jurassic of the Intermediate Domain, in the northern Subbetic (External zones of the Betic Cordillera, SE, Spain), reveals the transition from hemipelagic limestones (Baños Formation) to overlying shallow-water oolitic limestones (Jabalcuz Formation). Near La Guardia (Jaén), the basal part of the succession that records this transition comprises clast-supported calcareous breccias 24 m thick. Transverse sections reveal a fan shape close to a normal fault. The upper parts of some breccia beds were colonized by bivalve patches that locally evolve to bivalve-serpulid bioherms. The bioherms are massive, with low relief and a metre-scale lenticular shape. Two main parts have been differentiated: a bivalve bioherm and a serpulid bioherm. The bivalve bioherm consists of densely packed mytiloids in life position with secondary serpulids, where the matrix is a grainstone of bioclasts, peloids, and ooids. Laterally, there are accumulations of reworked bivalves. The serpulid bioherm is made up of serpulid aggregates in a bioclast wackestone. On an unstable slope with abundant breccias, bioherm development took place in favourable periods of low sedimentation rate. The pioneer colonisers of the sea-bottom were mytiloid bivalves in relatively high-energy waters. Shell comissures were aligned parallel to the dip of the slope as an adaptation to feeding from the plankton and seston inputs associated with palaeocurrents. The intercalation of reworked bivalve beds likely indicates brief periods of higher-energy storm events. The serpulid bloom in the upper part of the buildups was probably related to a stage of low-energy conditions (as evidenced by the delicacy of these structures), which is congruent with the wackestone texture. The relief provided by the bivalves favoured the development of the serpulid bioherm phase in an elevated and advantageous position for suspension-feeding. The dense packing in these bioherms offered clear advantages in this unstable palaeoenvironment: (1) dense populations are less susceptible than isolated individuals to overgrowth by other sessile organisms or predator attacks; and (2) the interconnection among individuals enhances stability and resistance against high-energy events, and increases the growth potential of future generations. The interruption of bioherm growth was probably related to the deposition of new breccia beds and reworked oolitic limestones.


Slope breccias Bivalves Serpulids Bioherms Taphonomy Palaeoenvironment Spain 


  1. Aguirre J (1998) Bioconstrucciones de Saccostrea cuccullata Born, 1778 en el Plioceno Superior de Cádiz (SO de España): implicaciones paleoambientales y paleoclimáticas. Rev Esp Paleontol 13:27–36Google Scholar
  2. Beauchamp B et al (1989) Lower Cretaceous (Albian) serpulid-bivalve carbonate ‘mounds’ related to hydrocarbon seeps, Canadian Arctic Archipelago. Can Soc Petrol Geol Mem 13:706–712Google Scholar
  3. Berra F, Jadoul F (1996) Norian serpulid and microbial bioconstructions: implications for the platform evolution in the Lombardy Basin (Southern Alps, Italy). Facies 35:143–162CrossRefGoogle Scholar
  4. Bianchi CN, Morri C (1996) Ficopomatus “reefs” in the Po River Delta (Northern Adriatic): their constructional dynamics, biology, and influence of brackish water biota. PSZN Mar Ecol 17:51–66CrossRefGoogle Scholar
  5. Bosence DWJ (1973) Recent serpulid reefs, Connemara, Ireland. Nature 242:40–41CrossRefGoogle Scholar
  6. Bosence DWJ (1979) The factors leading to aggregation and reef formation in Serpula vermicularis L. In: Larwood G, Rosen BR (eds) Biology and systematics of colonial organisms, Systematics Association Special, vol 11, Academic, New York, pp 299–318Google Scholar
  7. Braga JC, López-López JR (1989) Serpulid bioconstructions at the Triassic-Liassic boundary in southern Spain. Facies 21:1–10CrossRefGoogle Scholar
  8. Caline B, Gruet Y, Legendre C, Le Rhun J, L’Homer A, Mathieu R, Zbinden R (1988) Les récifs á annélides (Hermelles) en Baie du Mont Saint-Michel: ecologie, géomorphologie, sédimentologie, implications géologiques. Doc Bur Rech Géol Min 156:1–180Google Scholar
  9. Chapman ND, Moore CG, Harries DB, Lyndon AR (2007) Recruitment patterns of Serpula vermicularis L. (Polychaeta, Serpulidae) in Loch Creran, Scotland. Estuar Coastal Shelf Sci 73:598–606CrossRefGoogle Scholar
  10. Cirilli S, Iannace A, Jadoul F, Zamparelli V (1999) Microbial-serpulid build-ups in the Norian-Rhaetian of the western Mediterranean area: ecological response of shelf margin communities to stressed environments. Terra Nova 11:195–202CrossRefGoogle Scholar
  11. Climaco A, Boni M, Iannace A, Zamparelli V (1997) Platform margins, microbial/serpulids bioconstructions and slope-to-basin sediments in the Upper Triassic of the ‘Verbicaro Unit’ (Lucania and Calabria, southern Italy). Facies 36:37–56CrossRefGoogle Scholar
  12. Commito JA, Rusignuolo BR (2000) Structural complexity in mussel beds: the fractal geometry of surface topography. J Exp Mar Biol Ecol 255:133–152CrossRefGoogle Scholar
  13. Drzewiecki PA, Simó JA (2002) Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: examples from the Late Cretaceous of the south-central Pyrenees, Spain. Sediment Geol 146:155–189CrossRefGoogle Scholar
  14. Fagerstrom JA (1988) A structural model for reef communities. Palaios 3:217–220CrossRefGoogle Scholar
  15. Flügel E (2004) Microfacies of carbonate rocks: análisis, interpretación y application. Springer, Heidelberg, 976 ppGoogle Scholar
  16. Flügel E, Flügel-Kahler E, Martín JM, Martín-Algarra A (1984) Middle Triassic reefs from southern Spain. Facies 11:173–218CrossRefGoogle Scholar
  17. Fornós JJ, Forteza V, Martínez-Taberner A (1997) Modern polychaete reefs in Western Mediterranean lagoons: fico pomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic Islands. Palaeogeogr Palaeoclimatol Palaeoecol 128:175–186CrossRefGoogle Scholar
  18. Frey RW, Basan P, Smith JM (1987) Rheotaxis and distribution of oyster and mussels, Georgia tidal creeks and salt marshes, USA. Palaeogeogr Palaeoclim Palaeoecol 61:1–43CrossRefGoogle Scholar
  19. Friebe JG (1994) Serpulid-bryozoan-foraminiferal biostromes controlled by temperate climate and salinity: middle Miocene of Styrian Basin, Austria. Facies 30:51–62CrossRefGoogle Scholar
  20. Fürsich FT, Pandey DK (1999) Genesis and environmental significance of upper Cretaceous shell concentrations from the Cauvery Basin, southern India. Palaeogeogr Palaeoclimatol Palaeoecol 145:119–139CrossRefGoogle Scholar
  21. Fürsich FT, Pandey DK (2003) Sequence stratigraphy significance of sedimentary cycles and shell concentrations in the Upper Jurassic–Lower Cretaceous of Kachchh, western India. Palaeogeogr Palaeoclimatol Palaeoecol 193:285–309CrossRefGoogle Scholar
  22. Gaillard C (1983) Les biohermes à spongiaires et leur environnement dans l’Oxfordien du Jura méridional. Doc Lab Géol Lyon 90:1–515Google Scholar
  23. Hayward PJ, Ryland JS (1990) The marine fauna of the British Isles and Western Europe, Oxford University Press, Oxford, 996 ppGoogle Scholar
  24. Holt TJ, Rees EI, Hawkins SJ, Seed R (1998) Biogenic reefs: an overview of dynamic and sensitivity characteristics for conservation management of marine SACs. UK Marine SACs Project, vol IX, Scottish Association for Marine Science, Argyll, Scotland, 170 pp Google Scholar
  25. Ippolitov AP (2007) Contribution to the revision of some Late Callovian serpulids (Annelida, Polychaeta) of central Russia, part 1. Paleontol J 41:260–267CrossRefGoogle Scholar
  26. Kirkwood JM, Burton HR (1988) Macrobenthic species assemblages in Ellis Fjord, Vestfold Hills, Antarctica. Mar Biol 97:445–457CrossRefGoogle Scholar
  27. Lapointe L, Bourget E (1999) Influence of substratum heterogeneity scales and complexity on a temperate epibenthic marine community. Mar Ecol Prog Ser 189:159–170CrossRefGoogle Scholar
  28. Lawrence DR (1971) Shell orientation in recent and fossil oyster communities from the Carolinas. J Paleontol 45:347–349Google Scholar
  29. Maas Geesteranus RA (1942) On the formation of banks of Mytilus edulis. Arch Néerl Zool 6:283–325CrossRefGoogle Scholar
  30. Martín JM, Braga JC (1987) Alpujarride carbonate deposits (southern Spain): marine sedimentation in a Triassic Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 59:243–260CrossRefGoogle Scholar
  31. Meldahl KH, Flessa KW (1990) Taphonomics pathways and comparative biofacies and taphofacies in a recent intertidal/shallow shelf environment. Lethaia 23:43–60CrossRefGoogle Scholar
  32. Mistiaen B, Poncet J (1983) Stromatolites, serpulids and Trypanopora (works?), associated in small Givetian bioherms: Boulonnais, France. Palaeogeogr Palaeoclimatol Palaeoecol 41:125–138CrossRefGoogle Scholar
  33. Navarro V, Molina JM, Ruiz-Ortiz PA (2006) De calizas hemipelágicas a calizas de plataforma somera: un ejemplo de facies de transición en el Jurásico Medio: sección del Sur de San Cristóbal (Subbético, Jaén). Geogaceta 39:127–130Google Scholar
  34. Nemec W (1990) Aspects of sediment movement on steep delta slopes. Int Assoc Sedimentol Spec Publ 10:29–73Google Scholar
  35. Olóriz F, Reolid M, Rodríguez-Tovar FJ (2002) Fossil assemblages, lithofacies and taphofacies for interpreting depositional dynamics in the epicontinental Oxfordian of the Prebetic Zone, Betic Cordillera, southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 185:53–75CrossRefGoogle Scholar
  36. Olóriz F, Reolid M, Rodríguez-Tovar FJ (2003) A Late Jurassic carbonate ramp colonized by sponges and benthic microbial communities (External Prebetic, southern Spain). Palaios 18:528–545CrossRefGoogle Scholar
  37. Olóriz F, Reolid M, Rodríguez-Tovar FJ (2006) Approaching trophic structure in Late Jurassic neritic shelves: a western Tethys example from southern Iberia. Earth Sci Rev 79:101–139CrossRefGoogle Scholar
  38. Palma RM, Angeleri MP (1992) Early cretaceous serpulid limestones: Chachao Formation, Neuquen Basin, Argentina. Facies 27:175–178CrossRefGoogle Scholar
  39. Parsch KOP (1956) Die Serpuliden: Fauna des Südwestdeutschen Jura. Palaeontographica Abt A 107:211–240Google Scholar
  40. Parson KM, Brett CE (1991) Taphonomic processes and biases in modern marine environments: an actualistic perspective on fossil assemblages preservation. In: Donovan SK (ed) The processes of fossilization. Belhaven, London, pp 23–65Google Scholar
  41. Pruss SB, Payne JL, Bottjer DJ (2007) Placunopsis bioherms: the first metazoan buildups following the End-Permian mass extinction. Palaios 22:17–23CrossRefGoogle Scholar
  42. Reolid M, Gaillard C, Olóriz F, Rodríguez-Tovar FJ (2005) Microbial encrustation from the Middle Oxfordian–Earliest Kimmeridgian lithofacies in the Prebetic zone (Betic Cordillera, southern Spain): characterization, distribution and controlling factors. Facies 50:529–543CrossRefGoogle Scholar
  43. Reolid M, Gaillard C (2007) Microtaphonomy of bioclasts and paleoecology of microencrusters from the upper Jurassic spongiolithic limestones (External Prebetic, southern Spain). Facies 53:97–112CrossRefGoogle Scholar
  44. Rey J, Andreo B, García-Hernández M, Martín-Algarra A, Vera JA (1990) The Liassic “Lithiotis” facies north of Vélez Rubio (Subbetic Zone). Rev Soc Geol España 3:199–212Google Scholar
  45. Ruiz-Ortiz PA (1980) Análisis de facies del mesozoico de las Unidades Intermedias (entre Castril, provincia de Granada y Jaén). PhD Thesis, Universidad de Granada, Spain, 272 pp Google Scholar
  46. Ruiz-Ortiz PA (1982) Estratificaciones cruzadas de gran escala en las calizas oolíticas de la Formación Jabalcuz (Dogger): Dominio intermedio, Cordilleras Béticas. Acta Geol Hisp 17:271–275Google Scholar
  47. Ruiz-Ortiz PA, Bosence DWJ, Rey J, Nieto LM, Castro JM, Molina JM (2004) Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, southern Spain). Basin Res 16:235–257CrossRefGoogle Scholar
  48. Sageman BB, Wignall PB, Kauffmann EG (1991) Biofacies models for oxygen-deficient facies in epicontinental seas: tool for paleoenvironmental analysis. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events stratigraphy. Springer, Berlin, pp 542–564Google Scholar
  49. Seed R, Suchanek TH (1992) Population and community ecology of Mytilus. In: Gosling E (ed) The mussel Mytilus: ecology, physiology, genetics and culture. Developments in Aquaculture and Fisheries Science, vol 25. Elsevier, Amsterdam, pp 87–170Google Scholar
  50. Senowbari-Daryan B, Link M (2005) Filograna (colonial serpulid worm tubes) from upper Triassic (Norian) reef boulders of Taurus Mts (southern Turkey). Facies 51:454–459CrossRefGoogle Scholar
  51. Steinhoff I, Strohmenger C (1996) Zechstein 2 carbonate platform subfacies and grain-type distribution (Upper Permian, northwest Germany). Facies 35:105–132CrossRefGoogle Scholar
  52. Strasser A (1986) Ooids in Purbeck limestones (lowermost Cretaceous) of Swiss and French Jura. Sedimentology 33:711–727CrossRefGoogle Scholar
  53. Ten Hove HA, Van den Hurk P (1993) A review of recent and fossil serpulid ‘reefs’: actuopalaeontology and the ‘Upper Malm’ serpulid limestone in NW Germany. Geol Mijnbouw 72:23–67Google Scholar
  54. Titschack J, Bromley RG, Freiwald A (2005) Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): sedimentology and facies. Sediment Geol 180:29–56CrossRefGoogle Scholar
  55. Tomašových A (2006) Linking taphonomy to community-level abundance: insights into compositional fidelity of the Upper Triassic shell concentrations (Eastern Alps). Palaeogeogr Palaeoclimatol Palaeoecol 235:355–381CrossRefGoogle Scholar
  56. Vera JA (2001) Evolution of the South Iberian Continental Margin. In: Cavazza W, Roberston AHFR, Ziegler P (eds) Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mém Mus Nat Hist Natur, Paris, 186:109–143Google Scholar
  57. Vera JA, Arias C, García-Hernández M, López-Garrido AC, Martín-Algarra A, Martín Chivelet J, Molina JM, Rivas P, Ruiz-Ortiz PA, Sanz de Galdeano C, Vilas L (2004) In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 354–361Google Scholar
  58. Young GA (1983) The effect of sediment type upon the position and depth at which byssal attachment occurs in Mytilus edulis. J Mar Biol Assoc UK 63:641–651CrossRefGoogle Scholar
  59. Young GA (1985) Byssus-thread formation by the mussel Mytilus edulis: effects of environmental factors. Mar Ecol Prog Ser 24:261–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Vicente Navarro
    • 1
  • Matías Reolid
    • 1
  • J. Miguel Molina
    • 1
  • Pedro A. Ruiz-Ortiz
    • 1
  1. 1.Departamento de Geología, Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain

Personalised recommendations