Facies

, Volume 53, Issue 2, pp 177–188 | Cite as

Microstructure, growth banding and age determination of a primnoid gorgonian skeleton (Octocorallia) from the late Younger Dryas to earliest Holocene of the Bay of Biscay

  • Sibylle Noé
  • Lester Lembke-Jene
  • Julie Reveillaud
  • André Freiwald
Original Article

Abstract

A fossil primnoid gorgonian skeleton (Octocorallia) was recovered on the eastern Galician Massif in the Bay of Biscay (NE Atlantic) from 720 m water depth. The skeleton shows a growth banding of alternating Mg–calcitic and organic (gorgonin) increments in the inner part, surrounded by a ring of massive fibrous calcite. Three calcite-dominated cycles, bounded by thick organic layers, consist of five light-dark couplets of calcite and gorgonin. Two AMS-14C datings of the fossil skeleton give ages of 10,880 and 10,820 ± 45 14C years before present (BP). We arrive at a calibrated age range of 11,829–10,072 cal. years BP (two σ), which comprises the late Younger Dryas to the earliest part of the Holocene. The cyclic calcitic–organic growth banding may be controlled by a constant rate of calcite secretion with a fluctuating rate of gorgonin production, possibly related to productivity cycles. The skeletal fabric change of alternating calcitic–organic increments to massive fibrous calcite may be the result of hydrographic changes during the deglaciation as reflected by preliminary stable isotope data. If this hypothesis proves to be correct, primnoid gorgonians are able to match with varying hydrodynamic conditions by changing their biomineralisation mode.

Keywords

Primnoid gorgonian Microstructure Growth banding Radiocarbon dating Younger Dryas to Holocene Bay of Biscay 

References

  1. Adkins JD, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143CrossRefGoogle Scholar
  2. Andrews AH, Cordes EE, Mahoney MM, Munk K, Coale KH, Cailliet GM, Heifetz J (2002) Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471:101–110CrossRefGoogle Scholar
  3. Berger WH, Jansen E (1995) Younger Dryas episode: ice collapse and superfjord heat pump. In: Troelstra SR, van Hinte JE, Ganssen GM (eds) The Younger Dryas. North-Holland, Amsterdam, pp 61–105Google Scholar
  4. Broecker WS, Olson EA (1961) Lamont radiocarbon measurements VIII. Radiocarbon 3:176–204Google Scholar
  5. Cohen AL, McConnaughey TA (2003) A geochemical perspective on coral mineralization. In: Dove M, Weiner S, de Yoreo J (eds) Biomineralization. Rev Miner Geochem 54:151–187Google Scholar
  6. Grasshoff M, Zibrowius H (1983) Kalkkrusten auf Achsen von Hornkorallen, rezent und fossil (Cnidaria, Anthozoa, Gorgonaria). Senckenbergiana marit 15:111–145Google Scholar
  7. Griffin SM, Druffel ERM (1989) Sources of carbon to deep-sea corals. Radiocarbon 31:533–543Google Scholar
  8. Harkness DD (1983) The extent of the natural 14C deficiency in the coastal environment of the United Kingdom. J Eur Study Group Phys Chem Math Tech Appl Archaeol PACT 8(IV.9):351–364Google Scholar
  9. Heikoop JM, Risk MJ, Lazier AV, Schwarcz HP (1998) δ13C and δ18O of a deep-sea gorgonian coral from the Atlantic coast of Canada. EOS 79(17):179Google Scholar
  10. Heikoop HM, Hickmott DD, Risk MJ, Shearer CK, Atudorei V (2002) Potential climate signals from the deep-sea gorgonian coral Primnoa resedaeformis. Hydrobiologia 471:117–124CrossRefGoogle Scholar
  11. Hughen KA, Baillie MGL, Bard E, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer PJ, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) Marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1059–1086Google Scholar
  12. Labeyrie LD, Duplessy J-C, Duprat J, Juillet-Leclerc A, Moys J, Michel E, Kallel N, Shackelton NJ (1992) Changes in vertical structure of the North Atlantic Ocean between glacial and modern times. Quaternary Sci Rev 11:401–413CrossRefGoogle Scholar
  13. Le Danois ED (1948) Les profondeurs de la mer. Payot, Paris, 303 ppGoogle Scholar
  14. Lucas JM, Knapp LW (1997) A physiological evaluation of carbon sources for calcification in the octocoral Leptogorgia virgulata (Lamarck). J Exp Biol 200:2653–2662Google Scholar
  15. McCartney MS (1992) Recirculating components to the deep boundary current of the northern North Atlantic. Prog Oceanogr 29:283–383CrossRefGoogle Scholar
  16. McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. patterns. Geochim Cosmochim Acta 53:151–162CrossRefGoogle Scholar
  17. Nadeau MJ, Grootes PM, Schleicher M, Hasselberg P, Rieck A, Bitterling M (1998) Sample throughout and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(special issue):239–245Google Scholar
  18. Noé SU, Dullo W-Chr (2006) Skeletal morphogenesis and growth mode of modern and fossil deep-water isidid gorgonians (Octocorallia) in the West Pacific (New Zealand and Sea of Okhotsk). Coral Reefs 25:303–320CrossRefGoogle Scholar
  19. Risk MJ, Heikoop JM, Snow MG, Beukens R (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131CrossRefGoogle Scholar
  20. Robinson LF, Adkins JF, Keigwin LD, Southon J, Fernandez DP, Wang S-L, Scheirer DS (2005) Radiocarbon variability in the western North Atlantic during the last deglaciation. Science 310:1469–1473CrossRefGoogle Scholar
  21. Schröder-Ritzrau A, Mangini A, Lomitschka M (2003) Deep-sea corals evidence periodic reduced ventilation in the North Atlantic during the LGM/Holocene transition. Earth Planet Sci Lett 216:399–410CrossRefGoogle Scholar
  22. Sherwood OA, Heikoop JM, Sinclair DJ, Scott DB, Risk MJ, Shearer C, Azetsu-Scott K (2005a) Skeletal Mg/Ca in Primnoa resedaeformis: relationship to paleotemperature? In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 1061–1079CrossRefGoogle Scholar
  23. Sherwood OA, Scott DB, Risk MJ, Guilderson TP (2005b) Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis. Mar Ecol Prog Ser 301:129–134Google Scholar
  24. Sherwood OA, Heikoop JM, Scott DB, Risk MJ, Guilderson TP, McKinney RA (2005c) Stable isotope composition of deep-sea gorgonian corals Primnoa spp.: a new archive of surface processes. Mar Ecol Prog Ser 301:135–148Google Scholar
  25. Sinclair DJ, Sherwood OA, Risk MJ, Hillaire-Marcel C, Tubrett M, Slyvester P, McCulloch M, Kinsley L (2005) Testing the reproducibility of Mg/Ca profiles in the deep-water coral Primnoa resedaeformis: putting the proxy through its paces. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 1039–1060CrossRefGoogle Scholar
  26. Smith JE, Risk MJ, Schwarcz HP, McConnaughey TA (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature 386:818–820CrossRefGoogle Scholar
  27. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  28. Waelbroeck C, Duplessy J-C, Michel E, Labeyrie L, Paillard D, Duprat J (2001) The timing of the last deglaciation in North Atlantic climate records. Nature 412:724–727CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sibylle Noé
    • 1
    • 3
  • Lester Lembke-Jene
    • 1
  • Julie Reveillaud
    • 2
  • André Freiwald
    • 3
  1. 1.Leibniz Institute of Marine SciencesIFM-GEOMARKielGermany
  2. 2.Renard Centre of Marine Geology and Marine Biology SectionGhent UniversityGentBelgium
  3. 3.Institute of PaleontologyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations