, Volume 51, Issue 1–4, pp 554–565 | Cite as

Early post-mortem calcified Devonian acritarchs as a source of calcispheric structures

  • Józef Kaźmierczak
  • Barbara Kremer
Original Article


Uniquely preserved Late Devonian calcispheres were found in a core of the deep borehole Sosnowiec IG-1 (Upper Silesia, southern Poland). These enigmatic calcareous microfossils are interpreted here as acritarchs that underwent an early post-mortem calcification. Remnants of organic walls preserved in the calcispheres suggest that they represent various acanthomorphic acritarchs, characteristic members of the Palaeozoic marine phytoplankton. Taphonomic analysis combined with the light microscope and scanning electron microscope (SEM) observations of mineral and organic components of the investigated calcispheres suggest that a complex multi-stage process led to calcification of their in vivo non-mineralized acritarch forerunners. The ubiquity of acanthomorphic calcispheres in many Devonian shallow-water limestones is a testimony to little, thus far, documented acritarch crops that must have existed over extensive areas of carbonate-producing epicontinental seas. The scarcity of acritarchs described from Devonian shallow-water limestones may thus represent a taphonomic bias rather than real rarity or absence.


Calcispheres Acritarchs Calcification Carbonates Late Devonian 



We appreciate helpful reviews by Thomas Servais and Daniel Vachard (Lille), and by an anonymous reviewer. We are particularly grateful to Reed Wicander (Mount Pleasant) for supplying excellent SEM photographs of Devonian acritarchs. Thanks are also extended to Krzysztof Małkowski (Warsaw) for isotopic analyses, and to Michał Kowalewski (Blacksburg, Virginia) and Alf Lenz (London, Ontario) for correcting the English. The study has been supported by the Committee for Scientific Research (KBN) grant 6 P04D 057 18


  1. Aizenverg DE (1971) Atlas fauny turneyskikh otlozhenyi Donetskogo Basseyna. Naukova Dumka, Kiev, 327 pp [Russian]Google Scholar
  2. Alexandrowicz SW, Mamet BL (1973) Microfacies du Carbonifere inferieur du Dome de Dębnik (Pologne Meridionale). Rev Esp Micropaleont 5:447–466Google Scholar
  3. Aldridge RJ, Armstrong HA (1981) Spherical phosphatic microfossils from the Silurian of North Greenland. Nature 292:531–533CrossRefGoogle Scholar
  4. Beales FW (1958) Ancient sediments of Bahaman type. Amer Assoc Petrol Geol Bull 42:1845–1880Google Scholar
  5. Bersezio R, Erba E, Gorza M, Riva A (2002) Berriasian-Aptian black shales of the Maiolica formation (Lombardian Basin, Southern Alps, Northern Italy): local to global events. Palaeogeogr Palaeoclimatol Palaeoecol 180:253–275CrossRefGoogle Scholar
  6. Biernat G, Baliński A (1973) Fauna z otworów wiertniczych Sosnowiec IG-1 i Goczałkowice IG-1 (Stromatoporoidea, Tabulata, Brachiopoda i Trilobita). Spraw pos nauk Inst Geol Q Geol 17:629–630 [Polish]Google Scholar
  7. Birina LM (1948) Novye vidy izvyestkovykh vodorosley i foraminifer pogranichnykh sloyev devona i karbona. Soviet Geol 28:154–159 [Russian]Google Scholar
  8. Brenckle PL, Marshall FC, Waller SF, Wilhelm MH (1982) Calcareous microfossils from the Mississippian Koekuk Limestone and adjacent formations, Upper Mississippian River Valley: their meaning for North American and intercontinental correlation. Geol Palaeontol 15:47–88Google Scholar
  9. Buchroithner MF, Flügel E, Flügel HW, Stattegger K (1980) Die Devongerölle des paläozoischen Flysch von Menorca und ihre paläogeographische Bedeutung. N Jb Geol Paläont Abh 159:172–224Google Scholar
  10. Busson G, Noël D (1991) Les nannoconidés, indicateurs environnementaux des océans et mers épicontinentales du Jurassique terminal et du Crétacé inférieur. Oceanol Acta 14:333–356Google Scholar
  11. Butterfield NJ (1997) Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology 23:247–262Google Scholar
  12. Cayeux L (1929) Les Calcisphères typiques sont des Algues siphonées. CR Acad Sci Paris 188:594–597Google Scholar
  13. Cayeux L (1935) Les roches sédimentaires de France; roches carbonatees (calcaires et dolomies). Masson et Cie, Paris, 463 ppGoogle Scholar
  14. Conil R, Lys M (1964) Materiaux pour l’étude micropaléontologique du Dinantien de la Belgique et de la France (Avesnois). Mém Inst Géol Univ Louvain 23:1–296Google Scholar
  15. Cózar P, Rodriguez S (2000) Microproblematica del Carbonifero inferior del Area del Guadiato (suroeste de España). Rev Esp Paleontol 15:105–116Google Scholar
  16. Decho A (1990) Microbial exopolymer secretions in ocean environment: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–154Google Scholar
  17. Degens ET, Kaźmierczak J, Ittekkot V (1985) Cellular response to Ca2+ stress and its geological implications. Acta Palaeontol Pol 30:115–135Google Scholar
  18. Derville H (1931) Les marbres du calcaire carbonifère on Bas-Boulonnais. PhD Thesis Univ Strassbourg, 322 ppGoogle Scholar
  19. Derville H (1941) De quelque manières d’être des calcisphères. Bull Soc Géol France 5:357–365Google Scholar
  20. Derville H (1950) Contribution à l’étude des calcisphères du calcaire de Bachant. Ann Soc Géol Nord 70:273–285Google Scholar
  21. Dorning KJ (1987) The organic palaeontology of Palaeozoic carbonate environments. In: Hart MB (ed) Micropalaeontology of carbonate environments. British Micropalaeontol Soc, Chichester, pp 256–265Google Scholar
  22. Flügel E, Hötzl H (1971) Foraminiferen, Calcisphaeren und Kalkalgen aus dem Schwelmer Kalk (Givet) von Letmathe im Sauerland. N Jb Geol Paläont Abh 137:358–395Google Scholar
  23. Fritsch FE (1965) The structure and reproduction of the algae. 1. Cambridge University Press, Cambridge, 791 ppGoogle Scholar
  24. Hacquaert AL (1932) A propos des fossiles decouverts dans les roches du systeme du Kundelungu au Katanga (Congo belge). Acad R Belg Bull Cl Sci ser 5(18):256–268Google Scholar
  25. Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–283CrossRefGoogle Scholar
  26. Hartley AM, House WA, Callow ME, Leadbeater BSC (1995) The role of green algae in the precipitation of calcite and the coprecipitation of phosphate in freshwater. Int Rev Hydrobiol 80:385–401Google Scholar
  27. Hepperle D, Krienitz L (1997) Phacotus lenticularis (Chlamydomonadales, Phacotaceae) zoospores require external supersaturation of calcium carbonate for calcification in culture. J Phycol 33:415–424CrossRefGoogle Scholar
  28. Hindák F (1988) Studies on the Chlorococcal Algae (Chlorophyceae). IV. Biol Prace 34:263 ppGoogle Scholar
  29. Holmer LE (1987) Ordovician mazuelloids and other microfossils from Västergötland. Geol För Stockholm Förh 109:67–71Google Scholar
  30. Jacobson SR (1979) Acritarchs as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky Ohio, and New York. J Paleontol 53:1197–1212Google Scholar
  31. Kaisin F (1926) Les roches du Dinantien de Belgique. Int Geol Congr 13th, Belgique, 1922, CR 3:1237–1269Google Scholar
  32. Karpinsky A (1906) Die Trochilisken. Com Geol Mem N Ser 27:1–166 [Russia]Google Scholar
  33. Kaźmierczak J (1975) Colonial Volvocales (Chlorophyta) from the Upper Devonian of Poland and their palaeoenvironmental significance. Acta Palaeontol Pol 20:73–85Google Scholar
  34. Kaźmierczak J (1976) Volvocacean nature of some Palaeozoic non-radiosphaerid calcispheres and parathuramminid “Foraminifera”. Acta Palaeontol Pol 21:245–258Google Scholar
  35. Kaźmierczak J, Ittekott V, Degens ET (1985) Biocalcification through time: environmental challenge and cellular response. Paläont Z 59:15–33Google Scholar
  36. Kelts K, McKenzie JA (1982) Diagenetic dolomite formation in Quaternary anoxic diatomaceous muds of DSDP Leg Gulf of California. Ini Rep Deep Sea Drill Proj 64:553–569Google Scholar
  37. Kempe A, Schopf JW, Altermann W, Kudryavtsev AB, Heckl WM (2002) Atomic force microscopy of Precambrian microscopic fossils. Proc Natl Acad Sci USA 99:9117–9120CrossRefPubMedGoogle Scholar
  38. Kettenbrink EC Jr, Toomey DF (1975) Distribution and paleoecological implication of calcareous Foraminifera in the Devonian Cedar Valley Formation of Iowa. J Foram Res 5:176–187Google Scholar
  39. Keupp H (1979) Lower Cretaceous Calcisphaerulidae and their relationship to calcareous dinoflagellate cysts. Bull Centre Rech Explor-Prod Elf-Aquitaine 3:651–663Google Scholar
  40. Keupp H (1984) Revision der kalkigen Dinoflagellaten-Zysten. Paläont Z 58:9–31Google Scholar
  41. Klovan JE (1964) Facies analysis of the Redwater reef complex, Alberta, Canada. Bull Canad Petrol Geol 12:1–100Google Scholar
  42. Konishi K (1958) Studies of Devonian Algae, Part II, Devonian calcareous algae from Alberta, Canada. Q Colorado School Mines 53:89–109Google Scholar
  43. Koschel R (1990) Pelagic calcite precipitation and trophic state of hardwater lakes. Arch Hydrobiol Beih Ergeb Limnol 33:713–722Google Scholar
  44. Koschel R, Benndorf J, Proft G, Recknagel F (1983) Calcite precipitation as a natural control mechanism of eutrophication. Arch Hydrobiol 98:380–408Google Scholar
  45. Kotas A (1973) Profil utworów paleozoicznych w utworach wiertniczych Sosnowiec IG-1 i Goczałkowice IG-1. Spraw pos nauk Inst Geol Q Geol 17:626–627 [Polish]Google Scholar
  46. Kozur H (1984) Muellerisphaerida, eine neue Ordnung von Mikrofossilien unbekannter systematischer Stellung aus dem Silur und Unter-Devon von Ungarn. Geol Paläont Mitt Innsbruck 13:125–148Google Scholar
  47. Kremer B (2005) Mazuelloids: Product of post-mortem phosphatization of acanthomorphic acritarchs. Palaios 20:27–36Google Scholar
  48. Kremer B, Kaźmierczak J (2001) Devonian calcified acritarchs (calcispheres): a key to Mesozoic nannoconids? 21st IAS Meet Sediment, Davos 3–5 September 2001, Abstr and Prog, pp 180–181Google Scholar
  49. Le Hérissé A, Servais T, Wicander R (2000) Devonian acritarchs and related forms. Courier Forschinst Senckenberg 220:195–205Google Scholar
  50. Lombard A, Monteyne R (1952) Calcisphères dans le Frasnien de Bois-de-Villiers (Namur). Soc Belg Géol Paléont Hydrol Bull 61:13–25Google Scholar
  51. Lowenstein TK, Hardie LA, Timofeeff MN, Demicco RV (2003) Secular variation in seawater chemistry and the origin of calcium chlorite basinal brines. Geology 31:857–860CrossRefGoogle Scholar
  52. Loydell DK, McMillan I, Barron HF (1988) Muellerisphaerids from the Llandovery of western mid-Wales. J Micropaleontol 7:243–246Google Scholar
  53. Mamet BL (1973) Microfaciès viséens du Boulonnais (Nord, France). Rev Micropaléont 16:101–124Google Scholar
  54. Marszalek DS (1975) Calcisphere ultrastructure and skeletal aragonite from the alga Acetabularia antillana. J Sediment Petrol 45:266–271Google Scholar
  55. Martin F (1993) Acritarchs: a review. Biol Rev 68:475–538Google Scholar
  56. Masters BA, Scott RW (1979) Calcispheres and Nannoconids. In: Fairbridge RW, Jablonski D (eds) The encyclopedia of paleontology. Dowden, Hutchinson and Ross, Stroudsburg, pp 167–170Google Scholar
  57. Mazzullo SJ (2000) Organogenic dolomitization in peritidal to deep-sea sediments. J Sediment Res 70:10–23Google Scholar
  58. Mendez-Bedia I (1976) Biofacies y litofacies de la formacion Moniello-Santa Lucia (Devonico de la Cordillera Cantanbrica, NW de España). Trab Geol 9:3–93Google Scholar
  59. Menner VV, Reitlinger EA (1971) Provintsyonalnye ossobyennosti foraminifer srednevo i pozdnego devona severosibirskoy platformy. Vopr Mikropaleont 14:25–37 [Russian]Google Scholar
  60. Nazarov BB (1973) Radiolaryi iz nizhnikh gorizontov kembrya batenevskogo kryazha. Problemy Paleontologyi y Biostratigrafyi nizhnego kembrya Sibiryi y Dalnego Vostoka. Izd “Nauka”, Sibirskoye Otdelenye, Novosibirsk, 258 pp [Russian]Google Scholar
  61. Peck RE (1934) The North American trochiliscids, Paleozoic Charophyta. J Paleont 8:83–119Google Scholar
  62. Pia J (1937) Die wichtigsten Kalkalgen des Jungpaläozoikums und ihre geologische Bedeutung. 2nd Cong Etud Strat Geol Carbonifere, Heerlen, 1935, C R 2:765–856Google Scholar
  63. Préat A, Mamet B (1989) Sedimentation de la plate-forme carbonatee Givetienne Franco-Belge. Bull Centr Rech Explor-Prod Elf-Aquitaine 13:47–86Google Scholar
  64. Racki G, Soboń-Podgórska J (1993) Givetian and Frasnian calcareous microbiotas of the Holy Cross Mountains. Acta Palaeontol Pol 37:255–289Google Scholar
  65. Reid JF (1973a) Carbonate cycles, Pillara Formation (Devonian), Canning Basin, Western Australia. Bull Canad Petrol Geol 21:38–51Google Scholar
  66. Reid JF (1973b) Paleo-environments and paleogeography, Pillara Formation (Devonian), Western Australia. Bull Canad Petrol Geol 21:344–394Google Scholar
  67. Reitlinger EA (1957) Sfery devonskikh otlozhenyi russkoy platformy. Dokl Akad Nauk SSSR 115:774–776 [Russian]Google Scholar
  68. Reitlinger EA (1960) Kharakteristika ozerskikh y khovanskikh sloyev po mikroskopicheskim organicheskim ostatkam. Trudy Akad Nauk SSSR 14:136–177 [Russian]Google Scholar
  69. Rupp AW (1966) Origin, structure, and environmental significance of recent and fossil calcispheres. Geol Soc Amer Ann Meet Abstr Prog 186Google Scholar
  70. Sabirov AA (1978) Nowyye devonskyye foraminifery iz centralnogo Tadzhikistana. Paleont Zh 1:13–l19 [Russian]Google Scholar
  71. Saltovskaya VD (1974) Stratigrafiya kamennougolnykh otlozhenyi Zeravshano-gissarskoy gornoy oblasti. Izd “Donish”, Dushanbe, 145 pp [Russian]Google Scholar
  72. Servais T (1996) Some considerations on acritarch classification. Rev Palaeobot Palynol 93:9–22CrossRefGoogle Scholar
  73. Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Micr Ecol 28:175–211Google Scholar
  74. Soboń-Podgórska J (1973) Wstępne wyniki badań stratygraficznych fauny otwornicowej z otworów wiertniczych Sosnowiec IG-1 i Goczałkowice IG-1. Spraw pos nauk Inst Geol Q Geol 17:628–629 [Polish]Google Scholar
  75. Stanton RJ Jr (1963) Upper Devonian calcispheres from Redwater and South Sturgeon Lake Reefs, Alberta, Canada. Bull Canad Petrol Geol 11:410–418Google Scholar
  76. Stanton RJ Jr (1967) Radiosphaerid calcispheres in North America and remarks on calcisphere classification. Micropaleontology 13:465–472Google Scholar
  77. Teichert C (1965) Devonian rocks and paleogeography of Central Arizona. Geol Surv Prof Pap 464:1–181Google Scholar
  78. Thomas HD (1932) Origin of spheres in the Georgetown Limestone. J Paleontol 6:100–101Google Scholar
  79. Toomey DF (1972) Distribution and paleoecology of Upper Devonian (Frasnian) Algae and Foraminifera from selected areas in Western Canada and the northern United States. 24th IGC, 1972, Sect 7:621–630Google Scholar
  80. Vachard D, Clément B (1994) L’Hastarien (ex-Tournaisien inférieur et moyen) à algues et foraminifères de la zone Pélagonienne (Attique, Grèce). Rev Micropaléont 37:289–319Google Scholar
  81. Villain J-M (1975) “Calcisphaerulidae” (incerte sedis) du Cretacé supérieur du Limbourg (Pays-Bas), et d’autres régions. Palaeontographica A 149:193–242Google Scholar
  82. Wassman P, Vernet M, Mitchell BG, Rey F (1990) Mass sedimentation of Phaeocystis pouchetii in the Barents Sea. Mar Ecol Progr Ser 66:183–195Google Scholar
  83. Wanner J (1940) Gesteinsbildende Foraminiferen aus Malm und Unterkreide des östlichen Ostindischen Archipels. Paläont Z 22:75–99Google Scholar
  84. Wicander ER (1974) Upper Devonian-Lower Mississippian acritarchs and prasinophycean algae from Ohio, U.S.A. Palaeontographica B 148:9–43Google Scholar
  85. Wicander R (2002) Acritarchs: Proterozoic and Palaeozoic enigmatic organic-walled microfossils. In: Hoover RB, Levin GV (eds) Instruments, Methods, and Mission for Astrobiology IV. Proc Soc Phot-Opt Instrum Eng (SPIE) 4495:331–340Google Scholar
  86. Williamson WC (1881) On the organisation of the fossil plants of the Coal-Measures, Part X - including an examination of the supposed radiolarians of the Carboniferous rocks. Phil Trans R Soc London 171(1880):493–539Google Scholar
  87. Wray JL (1967) Upper Devonian Calcareous Algae. Prof Contr Colorado School Mines 3:1–76Google Scholar
  88. Wray JL (1977) Calcareous algae. Developments in palaeontology and stratigraphy 4. Elsevier, Amsterdam, 185 ppGoogle Scholar
  89. Xian-Tao Wu (1983) Origin and significance of constant-size fenestrae associated with calcispheres from the Lower Carboniferous of the Gower Peninsula, south Wales. Palaeogeogr Palaeoclimatol Palaeoecol 41:139–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of PaleobiologyPolish Academy of SciencesWarszawaPoland

Personalised recommendations