, Volume 51, Issue 1–4, pp 522–540 | Cite as

Taphonomy of Early Permian benthic assemblages (Carnic Alps, Austria): carbonate dissolution versus biogenic carbonate precipitation

  • Diethard SandersEmail author
  • Karl Krainer
Original Article


During the Early Permian, in the area of the Carnic Alps, a quartz-gravelly beach fringed a mixed siliciclastic-carbonate lagoon with fleshy algal meadows and oncoids; seaward, an ooid shoal belt graded down dip to a low-energy carbonate inner shelf with phylloid algal meadows. In limestones, foraminiferal biomurae and bioclast preservation record tapholoss by rotting of non-calcified organisms (interpreted as fleshy algae) and by dissolution of aragonitic fossils. Carbonate loss by dissolution was counteracted and, locally, perhaps exceeded by carbonate precipitation of encrusting foraminifera and as oncoids. Sites of abrasion and carbonate dissolution (beach), sites with tapholoss by rotting and dissolution, but with microbialite/foraminiferal carbonate precipitation (lagoon, inner shelf), and sites only of carbonate precipitation (ooid shoals) co-existed on discrete shelf compartments. Compartmentalized, contemporaneous carbonate dissolution and precipitation, to total amounts yet difficult to quantify, impede straightforward estimates of ancient carbonate sediment budget.


Permian Southern Alps Taphonomy Carbonate budget Calcium carbonate dissolution 



Paul Wright, Cardiff, and Oliver Weidlich, London, are thanked for constructive reviews


  1. Algeo TS, Wilkinson BH (1988) Periodicity of mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation. J Geol 96:313–322Google Scholar
  2. Baars DL, Torres AM (1991) Late Paleozoic phylloid algae - a pragmatic review. Palaios 6:513–515Google Scholar
  3. Broecker WS, Clark E (2003) Pseudo dissolution of marine calcite. Earth Planet Sci Lett 208:291–296CrossRefGoogle Scholar
  4. Buggisch W, Flügel E, Leitz F, Tietz G-F (1976) Die fazielle und paläogeographische Entwicklung im Perm der Karnischen Alpen und in den Randgebieten. Geol Rundsch 65:649–690Google Scholar
  5. Burchette TP, Riding R (1977) Attached vermiform gastropods in Carboniferous marginal marine stromatolites and biostromes. Lethaia 10:17–28Google Scholar
  6. Bush AM, Bambach RK (2004) Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. J Geol 112:625–642CrossRefGoogle Scholar
  7. Cherns L, Wright VP (2000) Missing molluscs as evidence of large-scale early skeletal aragonite dissolution in a Silurian sea. Geology 28:791–794CrossRefGoogle Scholar
  8. Coniglio M, James NP (1985) Calcified algae as sediment contributors to Early Paleozoic limestones: evidence from deep-water sediments of the Cow Head Group, western Newfoundland. J Sediment Petrol 55:746–754Google Scholar
  9. Flügel E (1971) Palökologische Interpretation des Zottachkopf-Profiles mit Hilfe von Kleinforaminiferen (Oberer Pseudoschwagerinen-Kalk, unteres Perm: Karnische Alpen). Carinthia II, Sonderh 28:61–96Google Scholar
  10. Flügel E (1974) Fazies-Interpretation der unterpermischen Sedimente in den Karnischen Alpen. Carinthia II, 164(84):43–62Google Scholar
  11. Flügel E (1977) Environmental models for Upper Paleozoic benthic calcareous algal communities. In: Flügel E (ed) Fossil algae. Springer, Berlin, pp 314–343Google Scholar
  12. Flügel E (2004) Microfacies of carbonate rocks. Springer, BerlinGoogle Scholar
  13. Flügel E, Flügel-Kahler E (1980) Algen aus den Kalken der Trogkofel-Schichten der Karnischen Alpen. In: Flügel E (ed) Die Trogkofel-Stufe im Unterperm der Karnischen Alpen. Carinthia, Sonderh 36:113–182Google Scholar
  14. Flügel E, Homann W, Tietz G-F (1971) Litho- und Biofazies eines Detailprofils in den Pberen Pseudoschwagerinen-Schichten (Unter-Perm) der Karnischen Alpen. Verh Geol Bundesanst 1971:10–42Google Scholar
  15. Flügel E, Fohrer B, Forke H, Krainer K, Samankassou E (1997) Cyclic sediments and algal mounds in the Upper Paleozoic of the Carnic Alps. Gaea Heidelberg 4:79–100Google Scholar
  16. Forke HC (1995) Biostratigraphie (Fusulinaceanen; Conodonten) und Mikrofazies im Unterperm (Sakmar) der Karnischen Alpen (Naßfeldgebiet, Österreich). Jb Geol Bundesanst 138:207–297Google Scholar
  17. Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the phanerozoic. Cambridge University Press, CambridgeGoogle Scholar
  18. Hampson GJ (2000) Discontinuity surfaces, clinoforms, and facies architecture in a wave-dominated, shoreface-shelf parasequence. J Sediment Res 70:325–340Google Scholar
  19. Homann W (1972) Unter- und tief-mittelpermische Kalkalgen aus den Rattendorfer Schichten, dem Trogkofel-Kalk und dem Treßdorfer Kalk der Karnischen Alpen (Österreich). Senckenberg Lethaea 53:135–313Google Scholar
  20. Kochansky-Devidé V (1973) Ramovsia limes n. gen. n. sp. (Problematica), ein Leitfossil der Grenzlandbänke (unteres Perm). N Jb Geol Paläont Mh 1973/8:462–468Google Scholar
  21. Krainer K (1992) Fazies, Sedimentationsprozesse und Paläogeographie im Karbon der Ost- und Südalpen. Jb Geol Bundesanst 135:99–193Google Scholar
  22. Krainer K, Davydov V (1998) Facies and biostratigraphy of the Late Carboniferous/Early Permian sedimentary sequence in the Carnic Alps (Austria/Italy). Geodiversitas 20:643–662Google Scholar
  23. Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A. Geochim Cosmochim Acta 63:2529–2546CrossRefGoogle Scholar
  24. Manzoni M, Venturini C, Vigliotti L (1989) Paleomagnetism of Upper Carboniferous limestones from the Carnic Alps. Tectonophysics 165:73–80CrossRefGoogle Scholar
  25. Morse JW, Gledhill DK, Millero FJ (2003) CaCO3 precipitation kinetics in waters from the Great Bahama Bank: Implications for the relationship between Bank hydrochemistry and whitings. Geochim Cosmocim Acta 67:2819–2826CrossRefGoogle Scholar
  26. Moulin E, Jordens A, Wollast R (1985) Influence of the aerobic bacterial respiration on the early dissolution of carbonates in coastal sediments. Proc Progr Belgian Oceanogr Res, March 1985, pp 196–208Google Scholar
  27. Murray JW, Alve E (1999) Natural dissolution of modern shallow water benthic foraminifera: taphonomic effects on the palaeoecological record. Palaeogeogr Palaeoclimatol Palaeoecol 146:195–209CrossRefGoogle Scholar
  28. Nelsen JE Jr, Ginsburg RN (1986) Calcium carbonate production by epibionts on Thalassia in Florida Bay. J Sediment Petrol 56:622–628Google Scholar
  29. Palmer TJ, Hudson JD, Wilson MA (1988) Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature 335:809–810CrossRefGoogle Scholar
  30. Pattison SAJ (1995) Sequence stratigraphic significance of sharp-based lowstand shoreface deposits, Kenilworth Member, Book Cliffs, Utah. Amer Assoc Petrol Geol Bull 79:444–462Google Scholar
  31. Plint AG (1988) Sharp-based shoreface sequences and “offshore bars” in the Cardium Formation of Alberta: their relationship to relative changes in sea level. In: Wilgus CK, Hastings BS, Ross CA, Posamentier H, Kendall CGStC (eds) Sea-level changes - an integrated approach. SEPM Spec Publ 42:357–370Google Scholar
  32. Powell EN, Parsons-Hubbard KM, Callender WR, Staff GM, Rowe GT, Brett CE, Walker SE, Raymond A, Carlson DD, White S, Heise EA (2002) Taphonomy on the continental shelf and slope: two-year trends - Gulf of Mexico and Bahamas. Palaeogeogr Palaeoclimatol Palaeoecol 184:1–35CrossRefGoogle Scholar
  33. Pratt BR (2001) Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology 29:763–766CrossRefGoogle Scholar
  34. Riding R (1991) Calcified cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 55–87Google Scholar
  35. Robbins LL, Tao Y, Evans CA (1997) Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology 25:947–950CrossRefGoogle Scholar
  36. Rodriguez S (2004) Taphonomic alterations in upper Viséan dissepimented rugose corals from the Sierra del Castillo unit (Carboniferous, Córdoba, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 241:135–153CrossRefGoogle Scholar
  37. Ross CA, Ross JRP (1985) Late Paleozoic sequences are synchronous and worldwide. Geology 13:194–197CrossRefGoogle Scholar
  38. Samankassou E (2002) Cool-water carbonates in a paleoequatorial shallow-water environment: The paradox of the Auernig cyclic sediments (Upper Pennsylvanian, Carnic Alps, Austria-Italy) and its implications. Geology 30:655–658CrossRefGoogle Scholar
  39. Sanders D (1999) Shell disintegration and taphonomic loss in rudist biostromes. Lethaia 32:101–112Google Scholar
  40. Sanders D (2000) Rocky shore-gravelly beach transition, and storm/post-storm changes of a Holocene gravelly beach (Kos island, Aegean Sea): Stratigraphic significance. Facies 42:227–244Google Scholar
  41. Sanders D (2001) Burrow-mediated carbonate dissolution in rudist biostromes (Aurisina, Italy): implications for taphonomy in tropical, shallow subtidal carbonate environments. Palaeogeogr Palaeoclimatol Palaeoecol 168:41–76CrossRefGoogle Scholar
  42. Sanders D (2003) Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance. J African Earth Sci 36:99–134CrossRefGoogle Scholar
  43. Sanders D (2004) Potential significance of syndepositional carbonate dissolution for platform banktop aggradation and sediment texture: a graphic modeling approach. Austrian J Earth Sci 95/96:71–79Google Scholar
  44. Scotese CR, Boucot AJ, McKerrow WS (1999) Gondwanan palaeogeography and palaeoclimatology. J African Earth Sci 28:99–114CrossRefGoogle Scholar
  45. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19CrossRefGoogle Scholar
  46. Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103CrossRefGoogle Scholar
  47. Vachard D, Krainer K (2001) Smaller foraminifers, characteristic algae and pseudo-algae of the latest Carboniferous - Early Permian Rattendorf Group, Carnic Alps (Austria/Italy). Riv Ital Paleont Stratigr 107:169–195Google Scholar
  48. Venturini C (1982) Il bacino tardoercinico di Pramollo (Alpi Carniche): Un evoluzione regolata della tettonica sinsedimentaria. Mem Soc Geol Ital 24:23–42Google Scholar
  49. Venturini C (1991) Introduction to the geology of the Pramollo basin (Carnic Alps) and its surroundings. Giorn Geol 3A, 53:13–47Google Scholar
  50. Voigt E (1966) Die Erhaltung vergänglicher Organismen durch Abformung infolge Inkrustation durch sessile Tiere. N Jb Geol Paläont Abh 125:401–422Google Scholar
  51. Walter LM, Burton EA (1990) Dissolution of Recent platform carbonate sediments in marine pore fluids. Amer J Sci 290:601–643Google Scholar
  52. Walter LM, Bischof SA, Patterson WP, Lyons TL (1993) Dissolution and crystallization in modern shelf carbonates: Evidence from pore water and solid phase chemistry. Phil Trans R Soc London A 344:27–36Google Scholar
  53. Weedon MJ (1990) Shell structure and affinity of vermiform gastropods. Lethaia 23:297–309Google Scholar
  54. Weedon MJ (1991) Microstructure and affinity of the enigmatic Devonian tubular fossil Trypanipora. Lethaia 24:227–234Google Scholar
  55. Wright P, Cherns L, Hogdes P (2003) Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211–214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Faculty of Geo- and Atmospheric SciencesUniversity of InnsbruckInnsbruckAustria

Personalised recommendations