pp 1–13 | Cite as

Dynamic three-dimensional displacement analysis of small-scale granular flows by fringe projection and digital image correlation

  • Bernardino BarrientosEmail author
  • Carlos Mares
  • Damiano Sarocchi
  • Mariano Cerca
  • Ricardo Valdivia
Original Paper


In this work, we present experimental results that show the feasibility of measuring three-dimensional displacement in models of dry granular avalanches. For this purpose, we have used a technique that is capable to measure simultaneously the three involved mutually perpendicular components of displacement on the free surface of the granular flow. The approach comprises two simultaneously used optical techniques: fringe projection, FP, and digital image correlation, DIC; the first technique yields the out-of-plane component of displacement, and the second one, the two in-plane components. Combination of both techniques is achieved by color encoding, which consists in using different color illumination sources for the two optical techniques, in conjunction with a camera recording in RGB. The resulting combination is robust since the illumination sources are non-coherent between them, avoiding any optical interference. This contribution shows the potentiality of the method to analyze dynamic events, by presenting temporal full-field sequences of displacement of small-scale granular flows down an inclined plane, at camera speeds up to 2000 fps. These types of measurements are valuable for validation of physical and numerical models related with the analysis of the dynamic behavior of granular flows in the earth. Because these phenomena, which include rock avalanches, debris avalanches, debris flows, and pyroclastic density currents, are among the most dangerous natural hazards in mountainous and volcanic areas, the possibility to foresee their behavior in a more precise way is extremely important in order to elaborate more rigorous physical models and improve the predictive capacity of the simulation software.


Fringe projection Granular flows Digital image correlation Three-dimensional displacement 


  1. Bagnold RA (1972) The nature of saltation and of ‘bed-load’ transport in water. Proc R Soc Lond A 332:473–504CrossRefGoogle Scholar
  2. Barrientos B, Cerca M, Garcia-Marquez J, Hernandez-Bernal C (2008) Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography. J Opt A: Pure App Opt 10:104027CrossRefGoogle Scholar
  3. Beynet JM, Trampczynski W (1977) Application de la stereophotogrammetrie a la mesure des deplacements et a l’etude de l’ecoulement des materiaux. Mater Constr 10:281–288CrossRefGoogle Scholar
  4. Blanco A, Barrientos B, Mares C (2016) Performance comparison of background-oriented schlieren and fringe deflection in temperature measurement: part I. Numerical evaluation. Opt Eng 55(5):054102CrossRefGoogle Scholar
  5. Breard ECP, Lube G, Jones JR, Dufek J, Cronin SJ, Valentine GA, Moebis A (2016) Coupling of turbulent and non-turbulent flow regimes within pyroclastic density currents. Nat Geosci 9:767–771CrossRefGoogle Scholar
  6. De Blasio FV (2011) Introduction to the physics of landslides. Lecture notes on the dynamics of mass wasting. Springer, LondonCrossRefGoogle Scholar
  7. Desrues J, Lanier J, Stutz P (1985) Localization of the deformation in tests on sand sample. Eng Fract Mech 21(4):909–921CrossRefGoogle Scholar
  8. Doyle EE, Hogg AJ, Mader HM (2011) A two layer approach to modelling the transformation of dilute pyroclastic currents into dense pyroclastic flows. Proc R Soc A 467:1348–1371CrossRefGoogle Scholar
  9. Forterre Y, Pouliquen O (2003) Long-surface wave instability in dense granular flows. J Fluid Mech 486:21–50CrossRefGoogle Scholar
  10. Gasvik KJ (2003) Optical metrology, third edn. Wiley, West SussexGoogle Scholar
  11. Genovese K, Casaletto L, Rayas JA, Flores V, Martinez A (2013) Stereo-digital correlation (DIC) measurements with a single camera using a biprism. Opt Lasers Eng 51:278–285CrossRefGoogle Scholar
  12. Gracia D, Cerca M, Carreon D, Barrientos B (2018) Analogue model of gravity driven deformation in the salt tectonics of northeastern Mexico. Rev Mex Ciencias Geolo 35(3):277–290CrossRefGoogle Scholar
  13. Granger RA (1995) Fluid mechanics. Dover Publications, New YorkGoogle Scholar
  14. Graveleau F, Dominguez S, Malavieille J (2008) A new analogue modelling approach for studying interactions between surface processes and deformation in active mountain belt piedmonts. In: Corti G (ed) GeoMod 2008 Third International Geomodelling Conference. Bolletino di Geofisica teorica ed Applicata, Villa la Pietra, pp 501–505Google Scholar
  15. Graveleau F, Malavieille J, Dominguez S (2012) Experimental modelling of orogenic wedges: a review. Tectonophysics 538-540:1–66CrossRefGoogle Scholar
  16. Gray JM, Edwards AN (2014) A depth-averaged μ(I)-rheology for shallow granular free-surface flows. J Fluid Mech 755:503–504CrossRefGoogle Scholar
  17. Gray JM, Tai YC, Noelle S (2003) Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J Fluid Mech 491:161–181CrossRefGoogle Scholar
  18. Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203CrossRefGoogle Scholar
  19. Jakob M, Hungr O (2005) Debris-flow hazards and related phenomena. Springer-Verlag, BerlinGoogle Scholar
  20. Jane J, Shen L, Wang L, Maningat CC (1992) Preparation and properties of small-particle corn-starch. Cereal Chem 69(3):280–283Google Scholar
  21. Malacara D, Servin M, Malacara Z (2005) Interferogram analysis for optical testing. Taylor and Francis, New YorkCrossRefGoogle Scholar
  22. Mares C, Barrientos B, Blanco A (2011) Measurement of transient deformation by color encoding. Opt Express 19(25):25712–25722CrossRefGoogle Scholar
  23. Mares C, Barrientos B, Valdivia R (2018) Three-dimensional displacement in multi-colored objects. Opt Express 25(10):11652–11672CrossRefGoogle Scholar
  24. Martinez F, Bonini M, Montanari D, Corti G (2016) Tectonic inversion and magmatism in the Lautaro Basin, northern Chile, Central Andes: a comparative approach from field data and analog models. J Geodyn 94-95:68–83CrossRefGoogle Scholar
  25. Marui H, Sato O, Watanabe N (1997) Gamahara torrent debris flow on 6 December 1996, Japan. Landslide News 10:4–6Google Scholar
  26. Nilforoushan F, Koyi HA (2007) Displacement fields and finite strains in a sandbox model simulating a fold-thrust-belt. Geophys J Int 169:1341–1355CrossRefGoogle Scholar
  27. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21(3):427–431CrossRefGoogle Scholar
  28. Pichot T, Nalpas T (2009) Influence of synkinematic sedimentation in a thrust system with two decollement levels; analogue modelling. Tectonophysics 473:466–475CrossRefGoogle Scholar
  29. Pollock N, Brand BD, Rowley PJ, Sarocchi D, Sulpizio R (2019) Inferring pyroclastic density current flow conditions using syn-depositional depositional sedimentary structures. Bull Volcanol. (accepted for publication)Google Scholar
  30. Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116CrossRefGoogle Scholar
  31. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer-Verlag, BerlinGoogle Scholar
  32. Pudasaini SP, Hsiau SS, Wang Y, Hutter K (2005) Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions. Phys Fluids 17:093301CrossRefGoogle Scholar
  33. Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, BerlinCrossRefGoogle Scholar
  34. Ritter MC, Santimano T, Rosenau M, Leever K, Oncken O (2018) Sandbox rheometry: co-evolution of stress and strain in Riedel- and critical wedge-experiments. Tectonophysics 722:400–409CrossRefGoogle Scholar
  35. Schellart WP, Strak V (2016) A review of analogue modelling of geodynamic processes: Approaches, scaling, materials and quantification, with an application to subduction experiments. J Geodyn 100:7–32CrossRefGoogle Scholar
  36. Sesé LF, Siegmann P, Patterson EA (2014a) Integrating fringe projection and digital image correlation for high quality measurements of shape changes. Opt Eng 53(4):044106CrossRefGoogle Scholar
  37. Sesé LF, Siegmann P, Díaz FA, Patterson EA (2014b) Simultaneous in- and -out-of-plane displacement measurements using fringe projection and digital image correlation. Opt Lasers Eng 52:66–74CrossRefGoogle Scholar
  38. Shi H, Ji H, Yang G, He X (2013) Shape and deformation measurement system by combining fringe projection and digital image correlation. Opt Lasers Eng 51:47–53CrossRefGoogle Scholar
  39. Shkadov VY (1967) Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn 2(1):29–34CrossRefGoogle Scholar
  40. Siegmann P, Alvarez-Fernandez V, Diaz Garrido F, Patterson AE (2011) A simultaneous in- and out-of-plane displacement measurement method. Opt Lett 36(1):10–12CrossRefGoogle Scholar
  41. Sjodahl M, Benckert LR (1993) Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy. Appl Opt 32:2278–2284CrossRefGoogle Scholar
  42. Sulpizio R, Delino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65CrossRefGoogle Scholar
  43. Sulpizio R, Castioni D, Rodriguez-Sedano LA, Sarocchi D, Lucchi F (2016) The influence of slope-angle ratio on the dynamics of granular flows: insights from laboratory experiments. Bull Volcanol 78:77CrossRefGoogle Scholar
  44. Sutton MA, Yan JH, Tiwari V, Schreier HW, Orteu JJ (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46:746–757CrossRefGoogle Scholar
  45. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA 72:156–160CrossRefGoogle Scholar
  46. Tatsuoka F, Nakamura S, Huang CC, Tani K (1990) Strength anisotropy and shear band direction in plane strain tests of sand. Soils Found 30(1):35–54CrossRefGoogle Scholar
  47. White DJ, Take WA, Bolton MD (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53(7):619–631CrossRefGoogle Scholar
  48. Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193CrossRefGoogle Scholar
  49. Wust C, Capson DW (1991) Surface profile measurement using color fringe projection. Mach Vis Appl 4:193–203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigaciones en ÓpticaLeónMexico
  2. 2.Universidad Autónoma de San Luis Potosí, Instituto de GeologíaSan Luis PotosíMexico
  3. 3.Lab. de Mecánica de Geosistemas, Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQueretaroMexico

Personalised recommendations