, Volume 16, Issue 12, pp 2301–2319 | Cite as

The 2016 Lamplugh rock avalanche, Alaska: deposit structures and emplacement dynamics

  • A. DufresneEmail author
  • G. J. Wolken
  • C. Hibert
  • E. K. Bessette-Kirton
  • J. A. Coe
  • M. Geertsema
  • G. Ekström
Original Paper


Supraglacial landslides result from the catastrophic failure of periglacial rock slopes and deposit large volumes of rock and ice onto the glacier surface. The most remarkable features of these landslides are their prominent long flowbands and a high mobility that exceeds that of their counterparts in other environments. Based on field surveys, high-resolution digital elevation models, and continuous seismic data, we show that the emplacement dynamics of the 2016 rock avalanche on Lamplugh Glacier were characterized by two distinct stages. During the first stage, the debris traveled about 5 km from the base of the slope. Clear long-period seismic signals during this stage record strong interactions of the rock avalanche debris with the ground, suggesting dynamic processes such as grain collisions and fragmentation. The second stage was essentially aseismic at long periods and dominated by low-friction sliding at slow deceleration rates. A higher density of flowbands and increased entrainment of snow from the runout path characterize the morphology of this second-stage distal deposition. Around the margins, lobes are offset by up to 400 m along major strike-slip faults, whereas within individual lobes, offsets between flowbands are much less pronounced (0 to < 10 m). The two-stage emplacement model may explain the higher apparent mobility of supraglacial landslides.


Supraglacial Rock avalanche Lamplugh glacier Flowbands Seismic signals Runout dynamics 



We thank Marc-André Brideau, Bill Schulz, Rex Baum, Janet Slate, an anonymous reviewer, and the journal editor for their constructive reviews; Colin Stark for helpful discussions in the field; Katreen Wikstrom Jones for her help in processing some of the photogrammetric data used in this study; and Marianne Dohms of RWTH-Aachen University, Germany, for grain size analyses.

The authors appreciate support and funding from the University of Alaska Fairbanks and the Alaska Division of Geological & Geophysical Surveys. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Supplementary material

10346_2019_1225_Fig18_ESM.png (437 kb)

Histrogram of furrow (representative of flowbands) number versus length. (PNG 437 kb)

10346_2019_1225_MOESM1_ESM.tif (437 kb)
High Resolution Image (TIF 437 kb)
10346_2019_1225_Fig19_ESM.png (28.2 mb)

(A) Generalized direction of crevasses on the Lamplugh Glacier (purple lines), mapped from DigitalGlobe imagery collected on 2 October 2015. The red box indicates the extent of (B) and (C). (B) Orientation and geometry of crevasses on the surface of the Lamplugh Glacier as shown in DigitalGlobe imagery from 2 October 2015. (C) Transverse extensional features (section 4.4.1) shown on a hillshade of the Lamplugh rock avalanche deposit differ in both size and orientation from crevasses on the underlying glacier surface. (PNG 28893 kb)

10346_2019_1225_MOESM2_ESM.tif (28.2 mb)
High Resolution Image (TIF 28893 kb)
10346_2019_1225_Fig20_ESM.png (2.6 mb)

Spatial and size distribution of megablocks. (PNG 2633 kb)

10346_2019_1225_MOESM3_ESM.tif (2.6 mb)
High Resolution Image (TIF 2633 kb)
10346_2019_1225_Fig21_ESM.png (345 kb)

Rock avalanche velocity as derived from runup heights versus runout distance. The black circles correspond to runup locations R1-R4 (cf. Fig. 16C). A theoretical residual velocity at the toe margin before stopping was calculated using the linear fit equation shown in the plot. (PNG 345 kb)

10346_2019_1225_MOESM4_ESM.tif (345 kb)
High Resolution Image (TIF 345 kb)


  1. Agisoft (2018). Photoscan Professional Version1.2.3 build 2331Google Scholar
  2. Allstadt K (2013) Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms. J Geophys Res Earth Surf 118(3):1472–1490CrossRefGoogle Scholar
  3. Aranson IS, Malloggi F, Clément E (2006) Transverse instability of avalanches in granular flows down an incline. Phys Rev E 73:050302–0501-4CrossRefGoogle Scholar
  4. Bachelet V, Mangeney A, De Rosny J, Toussaint R, Farin M (2018) Elastic wave generated by granular impact on rough and erodible surfaces. J Applied Phys 123:044901CrossRefGoogle Scholar
  5. Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342CrossRefGoogle Scholar
  6. Bessette-Kirton EK (2017) An analysis of landslide volume, structures, and kinematics from satellite imagery of the 2016 Lamplugh rock avalanche, Glacier Bay National Park and Preserve, Alaska. M.S. thesis, Colorado School of Mines, 107 p. Scholar
  7. Bessette-Kirton EK, Coe JA (2016) Inventory of rock avalanches in western Glacier Bay National Park and Preserve, Alaska, 1984–2016: A baseline data set for evaluating the impact of climate change on avalanche magnitude, mobility, and frequency. U.S. Geological Survey data release.
  8. Bessette-Kirton EK, Coe JA (2018) Pre- and post-event digital elevation models generated from high-resolution stereo satellite imagery of the 2016 Lamplugh rock avalanche in Glacier Bay National Park and Preserve, Alaska: U.S. Geological Survey data release,
  9. Bessette-Kirton EK, Coe JA, Zhou W (2018) Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on glaciers: Application to the 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. J Geophys Res Earth Surf 123(4):622–641CrossRefGoogle Scholar
  10. Brew DA, Johnson BR, Grybeck D, Griscom A, Barnes DF, Kimball AL, Still JC, Rataj JL (1978) Mineral resources of the Glacier Bay National Wilderness study area, Alaska. U.S. Geological Survey Open-File Report 78–494, U.S. Geological Survey, Reston, Virginia: 670 p., 6 sheets, scale 1:125,00. Scholar
  11. Campbell CS (1989) Self-lubrication for long runout landslides. J Geol 97(6):653–665CrossRefGoogle Scholar
  12. Chow VT (1959) Open-channel hydraulics. McGraw-Hill, New York, p 680Google Scholar
  13. Clavero J, Polanco E, Godoy E, Aguilar G, Sparks RSJ, van Wyk de Vries B, de Arce CP, Matthews S (2004) Substrata influence in the transport and emplacement mechanism of the Ollagüe debris avalanche (Northern Chile). Acta Vulcanol 16(1–2):59–76Google Scholar
  14. Clavero, J., Sparks, R., Huppert, H., & Dade, W. (2002). Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bulletin of Volcanology, 64(1), 40–54.Google Scholar
  15. Coe JA, Baum RL, Allstadt KE, Kochevar BF, Schmitt RG, Morgan ML, White JL, Stratton B Hayashi TA, Kean JW (2016) Rock avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek Valley, western Colorado. Geosphere 12(2):607–631CrossRefGoogle Scholar
  16. Coe JA, Bessette-Kirton EK, Geertsema M (2018) Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. Landslides 15(3):393–407. CrossRefGoogle Scholar
  17. Connor C, Streveler G, Post A, Monteith D, Howell W (2009) The Neoglacial landscape and human history of Glacier Bay, Glacier Bay National Park and Preserve, southeast Alaska, USA. The Holocene 19:381–393CrossRefGoogle Scholar
  18. Dammeier F, Moore JR, Haslinger F, Loew S (2011) Characterization of alpine rockslides using statistical analysis of seismic signals. J Geophys Res 116(F4):2003–2012CrossRefGoogle Scholar
  19. Davies TR (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15(1):9–24CrossRefGoogle Scholar
  20. Davies TR, McSaveney MJ (2009) The role of fragmentation in the motion of large landslides. Eng Geol 109(1–2):67–79CrossRefGoogle Scholar
  21. Davies TR, McSaveney MJ (2012) Mobility of long-runout rock avalanches. In: Clague JJ, Stead D (eds) Landslides—types, mechanisms and modeling. Cambridge University Press, UK, pp 50–59CrossRefGoogle Scholar
  22. Delaney KB, Evans SG (2014) The 1997 Mount Munday landslide (British Columbia) and the behaviour of rock avalanches on glacier surfaces. Landslides 11:1019–1036CrossRefGoogle Scholar
  23. Deline P, Gruber S, Delaloye R, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, McColl S, Ravanel L, Schoeneich P (2015) Ice loss and slope stability in high-mountain regions. In: Haeberli W, Whiteman C, Shroder JF (eds) Snow and ice-related hazards, risks and disasters, Hazards and disasters series. Elsevier, Amsterdam, pp 521–561 CrossRefGoogle Scholar
  24. Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path material and comparison to rock avalanche events. Earth Surf Proc Landforms 37:1527-1541CrossRefGoogle Scholar
  25. Dufresne A, Davies TR (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105:171–181CrossRefGoogle Scholar
  26. Dunning SA, Rosser NJ, McColl ST, Reznichenko NV (2015) Rapid sequestration of rock avalanche deposits within glaciers. Nature Communications 6(7964):7Google Scholar
  27. Ekström G, Stark CP (2013) Simple scaling of catastrophic landslide dynamics. Science 339:1416–1419CrossRefGoogle Scholar
  28. Farin M, Mangeney A, De Rosny J, Toussaint R, Trinh PT (2018) Link between the dynamics of granular flows and the generated seismic signal: insights from laboratory experiments. J Geophys Res Earth Surf 123(6):1407–1429. CrossRefGoogle Scholar
  29. Geertsema M (2012) Initial observations of the 11 June 2012 rock/ice avalanche, Lituya Mountain, Alaska. The First Meeting of Cold Region Landslides Network, Harbin, China:49–54.Google Scholar
  30. Gruber S (2012a) Derivation and analysis of a high resolution estimate of global permafrost zonation. Cryosphere 6:221–233. CrossRefGoogle Scholar
  31. Gruber S (2012b) Global permafrost zonation index map,, last accessed July, 2017Google Scholar
  32. Guthrie RH, Friele P, Allstadt K, Roberts N, Evans SG, Delaney KB, Roche D, Clague JJ, Jakob M (2012) The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: Characteristics, dynamics, and implications for hazard and risk assessment. Nat. Hazards Earth Syst. Sci. 12:1277–1294. CrossRefGoogle Scholar
  33. Hancox GT, Thomson R (2013) The January 2013 Mt Haast rock avalanche and ball ridge rock fall in Aoraki/Mt Cook National Park, New Zealand. GNS Science Report 2013/33:34 pGoogle Scholar
  34. Hewitt K (1988) Catastrophic landslide deposits in the Karakoram Himalaya. Science 242(4875):64–67CrossRefGoogle Scholar
  35. Hibert C, Ekström G, Stark CP (2014) Dynamics of the Bingham Canyon mine landslides from broadband signal analysis. Geophys Res Letters 41:4535–4541CrossRefGoogle Scholar
  36. Hibert C, Stark CP, Ekström G (2015) Seismology of the Oso-Steelhead landslide. Nat Haz Earth System Sci Disc 2(12):7309–7327CrossRefGoogle Scholar
  37. Hibert C, Ekström G, Stark CP (2017) The relationship between bulk-mass momentum and short-period seismic radiation in catastrophic landslides. J Geophys Res Earth Surf 122:1201–1215CrossRefGoogle Scholar
  38. Huggel C, Slazmann N, Allen S, Caplan-Auerbach J, Fischer L, Haeberli W, Larsen C, Schneider D, Wessels R (2010) Recent and future warm extreme events and high-mountain slope stability. Phil TransRoyal Soc A 368:2435–2459CrossRefGoogle Scholar
  39. Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Proc Landforms 37(1):77–91CrossRefGoogle Scholar
  40. Iverson RM, George DL, Logan M (2016) Debris flow runup on vertical barriers and adverse slopes. J Geophys Res Earth Surf 121:2333–2357CrossRefGoogle Scholar
  41. Jamieson SSR, Ewertowski MW, Evans DJA (2015) Rapid advance of two mountain glaciers in response to mine-related debris loading. J Geophys Res Earth Surf 120:1418–1435CrossRefGoogle Scholar
  42. Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160CrossRefGoogle Scholar
  43. Jiskoot H (2011) Long-runout rockslide on glacier at Tsar Mountain, Canadian Rocky Mountains: potential triggers, seismic and glaciological implications. Earth Surf Proc Landforms 36:203–216CrossRefGoogle Scholar
  44. Johnson B (1978) Blackhawk landslide, California, USA. Developments Geotechn Eng 14:481–504CrossRefGoogle Scholar
  45. Kanamori H, Given JW (1982) Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens: A terrestrial monopole? J Geophys Res 87:5422–5432CrossRefGoogle Scholar
  46. Larsen CF, Motyka RJ, Freymueller JT, Echelmeyer KA, Ivins ER (2005) Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet Sci Lett 237:548–560CrossRefGoogle Scholar
  47. Mankhemthong N, Doser DI, Pavlis TL (2013) Interpretation of gravity and magnetic data and development of two-dimensional cross-sectional models for the Border Ranges fault system, south-central Alaska. Geosphere 9(2):242–259CrossRefGoogle Scholar
  48. McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand. Rev Eng Geology 15:35–70CrossRefGoogle Scholar
  49. Melosh HJ (1979) Acoustic fluidization—a new geologic process. J Geophys Res 84(B13):7513–7520CrossRefGoogle Scholar
  50. Moretti L, Mangeney A, Capdeville Y, Stutzmann E, Huggel C, Schneider D, Bouchut F (2012) Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys Res Lett 39:L16402CrossRefGoogle Scholar
  51. Paguican EMR, van Wyk de Vries B, Lagmay AMF (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11(1):67–80CrossRefGoogle Scholar
  52. Pouliquen O, Delour J, Savage SB (1997) Fingering in granular flows. Nature 386(6627):816–817CrossRefGoogle Scholar
  53. Reznichenko NV, Davies TRH, Alexander DJ (2011) Effects of rock avalanches on glacier behaviour and moraine formation. Geomorphology 132:327–338CrossRefGoogle Scholar
  54. Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4(4):657–686CrossRefGoogle Scholar
  55. Shugar DH, Rabus BT, Clague JJ, Capps DM (2012) The response of Black Rapids Glacier, Alaska, to the Denali earthquake rock avalanches. J Geophys Res 117:F010006. CrossRefGoogle Scholar
  56. Shulmeister J, Davies TR, Evans DJA, Hyatt OM, Tovar DS (2009) Catastrophic landslides, glacier behavior and moraine formation—a view from an active plate margin. Quaternary Scie Rev 28(11–12):1085–1096CrossRefGoogle Scholar
  57. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration of the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26CrossRefGoogle Scholar
  58. Stark CP, Wolovick M, Ekström G (2012) Glacier surge triggered by massive rock avalanche: Teleseismic and satellite image study of long-runout landslide onto RGO Glacier, Pamirs. AGU Fall Meeting: C32A-07Google Scholar
  59. Strom A, Abdrakhmatov K (2018) Rockslides and rock avalanches of Central Asia: distribution, morphology, and internal structure. Elsevier, 458 p.Google Scholar
  60. Uhlmann M, Korup O, Huggel C, Fischer L, Kargel JS (2013) Supra-glacial deposition and flux of catastrophic rock-slope failure debris, south-Central Alaska. Earth Surface Processes and Landforms 38(7):675–682. CrossRefGoogle Scholar
  61. Vacco DA, Alley RB, Pollard D (2010) Glacial advance and stagnation caused by rock avalanches. Earth Planet. Sci. Lett. 294(1–2):123–130CrossRefGoogle Scholar
  62. van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–227CrossRefGoogle Scholar
  63. Walsh JE, Bienek PA, Brettschneider B, Euskirchen ES, Lader R, Thoman RL (2017) THe exceptionally warm winter of 2015/16 in Alaska. J Climate 30:2069–2087CrossRefGoogle Scholar
  64. Wilson FH, Hults CP, Mull CG, Karl SM (2015) Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, U.S. Geological Survey, Reston, Virginia:197 p., 2 sheets, scale 1:584,000.
  65. Yamasaki S, Nagata H, Kawaguchi T (2014) Long-travelling landslides in deep snow conditions induced by the 2011 Nagano Prefecture earthquake, Japan. Landslides 11(4):605–613CrossRefGoogle Scholar
  66. J. Clavero, R. Sparks, H. Huppert, W. Dade, (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bulletin of Volcanology 64 (1):40-54CrossRefGoogle Scholar
  67. Clavero, J., Sparks, R., Huppert, H., & Dade, W. (2002). Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bulletin of Volcanology, 64(1), 40-54.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Geology and HydrogeologyRWTH-Aachen UniversityAachenGermany
  2. 2.Division of Geological & Geophysical SurveysFairbanksUSA
  3. 3.International Arctic Research CenterUniversity of Alaska FairbanksFairbanksUSA
  4. 4.Institut de Physique du Globe de Strasbourg - CNRS UMR 7516University of Strasbourg/EOSTStrasbourgFrance
  5. 5.U. S. Geological SurveyGeologic Hazards Science CenterGoldenUSA
  6. 6.Ministry of Forests, Lands, Natural Resource Operations and Rural DevelopmentPrince GeorgeCanada
  7. 7.Lamont-Doherty Earth ObservatoryColumbia UniversityNew YorkUSA

Personalised recommendations