pp 1–16 | Cite as

Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain)

  • Pablo ValenzuelaEmail author
  • José Luís Zêzere
  • María José Domínguez-Cuesta
  • Manuel Antonio Mora García
Original Paper


Landslides are one of the most serious geomorphological hazards in Asturias (NW Spain), where their temporal forecasting constitutes a key issue. The present work uses 559 records from the Principality of Asturias Landslide Database (BAPA) and daily precipitation data series from six rain gauges, gathered during a period of 8 hydrological years (2008–2016), to calculate empirical antecedent rainfall thresholds for the triggering of landslides. The methodology includes (i) the selection of a representative input dataset and (ii) the assessment of the performance of the thresholds through contingency tables and skill scores. On this basis, six local rainfall thresholds for different areas within Asturias have been calculated and compared, allowing progress towards a better understanding of the rainfall-landslides relationship in the NW of Spain. The analysis has highlighted the strong influence of (i) the climatic variability between areas and (ii) the different seasonal precipitation patterns on the landslide-triggering conditions. The antecedent rainfall plays a key role during the wet period while the intensity of the rainfall event is the most relevant factor during the dry period. These observations must be considered to successfully address the temporal forecasting of landslides.


Landslides Rainfall triggering Empirical threshold Antecedent rainfall Asturias 



The authors are grateful to the comments of the editor and two anonymous referees, who greatly helped to improve the manuscript.

Funding information

This research has been funded by the Department of Employment, Industry and Tourism of the Government of Asturias, Spain, and the European Regional Development Fund FEDER, within the framework of the research grant “GEOCANTABRICA: Procesos geológicos modeladores del relieve de la Cordillera Cantábrica” (FC-15-GRUPIN14-044), and supported by cooperation between the Department of Geology at the University of Oviedo and the AEMET.


  1. AEMET (2012) Valores Climatológicos normales y estadísticos de estaciones principales (1981-2010). Agencia Estatal de Meteorología. [on line] [accessed 30/11/ 2015]
  2. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265. CrossRefGoogle Scholar
  3. Alonso JL, Pulgar J, García-Ramos J, Barba P (1996) W5 Tertiary basins and Alpine tectonics in the Cantabrian Mountains (NW Spain). In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain: the stratigraphic record of crustal kinematics. Cambridge University Press, pp 214-227Google Scholar
  4. Alonso JL, Marcos A, Suárez A (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: the León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geol Acta 7(4):451–473. CrossRefGoogle Scholar
  5. Arasti E, Celis R, Fernández-Cañadas JA, Andrés MS, Moreno G (2002) Precipitaciones máximas en Asturias. Biblioteca de módulos TEMPO. Agencia Estatal de Meteorología. [on line] [accessed 30/11/2015]
  6. Ballesteros D, Jiménez-Sánchez M, Giralt S, García-Sansegundo J, Meléndez-Asensio M (2015) A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain). Geomorphology 247:35–54. CrossRefGoogle Scholar
  7. Baum RL, Godt JW (2010) Early warning of rainfall-induced landslides and debris flows in the USA. Landslides 7:259–272. CrossRefGoogle Scholar
  8. Botey, R., Guijarro, J.A., Jiménez, A., 2013. Valores Normales de Precipitación Mensual 1981–2010. Ministerio de Agricultura, Alimentación y Medio Ambiente-Agencia Estatal de Meteorología, Madrid. NIPO: 281-13-007-XGoogle Scholar
  9. Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458CrossRefGoogle Scholar
  10. Brunetti MT, Melillo M, Perucacci S, Ciabatta L, Brocca L (2018) How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens Environ 210:65–75. CrossRefGoogle Scholar
  11. Caine N (1980) The rainfall intensity–duration control of shallow landslides and debris flows. Geografiska Annaler A 62:23–27Google Scholar
  12. Caracciolo D, Arnone E, Conti FL, Noto LV (2017) Exploiting historical rainfall and landslide data in a spatial database for the derivation of critical rainfall thresholds. Environ Earth Sci 76(222):1–16. Google Scholar
  13. Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93. CrossRefGoogle Scholar
  14. Corominas J, Moya J, Hürlimann M (2002) Landslide rainfall triggers in the Spanish Eastern Pyrenees. In: Proceeding of the 4th EGS Plinius Conference on Mediterranean Storms, Mallorca, Spain.Google Scholar
  15. Crozier MJ (1986) Landslides: causes, consequences and environment. Croom Helm, London, p 252Google Scholar
  16. Crozier MJ, Glade T (1999) Frequency and magnitude of landsliding: fundamental research issues. Zeitschrift für Geomorphologie, Supplement band 115:141–155Google Scholar
  17. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation transportation research board special report 247, Washington D.C., pp 36-75Google Scholar
  18. Dahala RK, Hasegawa S (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100:429–443. CrossRefGoogle Scholar
  19. Domènech G, Corominas J, Moya J (2012) Determinación de umbrales pluviométricos para la reactivación de grandes deslizamientos mediante curvas ROC. In: Díez G (ed) Avances de la Geomorfología en España 2010-2012. Actas de la XII Reunión Nacional de Geomorfología, Santander, Spain, pp 65–68Google Scholar
  20. Domínguez-Cuesta MJ (2003) Geomorfología e Inestabilidades de ladera en la Cuenca Carbonífero Central (Valle del Nalón, Asturias). Análisis de la susceptibilidad ligada a los movimientos superficiales del terreno. PhD dissertation, Universidad de Oviedo, 224.Google Scholar
  21. Domínguez-Cuesta MJ, Jiménez-Sánchez M, Rodríguez García A (1999) Press archives as temporal records of landslides in the North of Spain: relationships between rainfall and instability slope events. Geomorphology 30(1–2):125–132. CrossRefGoogle Scholar
  22. Domínguez-Cuesta MJ, Jiménez-Sánchez M, Berrezueta E (2007) Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): geomorphological features, conditioning factors and methodological implications in susceptibility assessment. Geomorphology 89:358–369CrossRefGoogle Scholar
  23. Domínguez-Cuesta MJ, Quintana L, Alonso JL, García Cortés S (2017) Evolution of a rainfall induced landslide in Porciles, Asturias (North of Spain). EGU General Assembly 2017. Geophys Res Abstr 19:EGU2017–EGU9344Google Scholar
  24. Domínguez-Cuesta MJ, Valenzuela P, Rodríguez-Rodríguez L, Ballesteros D, Jiménez-Sánchez M, Piñuela L, García-Ramos JC (2018) Cliff coast of Asturias. In: Morales JA (ed) Spanish coastal systems: dynamic processes, sediments and management. Springer, pp 49-77. ISBN 978-3-319-93169-2Google Scholar
  25. Ferrer Gijón M (1995) Los movimientos de ladera en España. In: Reducción de Riesgos Geológicos en España. Jornadas sobre Reducción de Riesgos Geológicos en España, Instituto Tecnológico Geominero de España and Real Academia de Ciencias Exactas, Físicas y Naturales, Madrid, Spain, pp 69–82Google Scholar
  26. Fiedler FR (2003) Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps. J Hydrol Eng 8(4):219–221. CrossRefGoogle Scholar
  27. Fuchs S, Keiler M, Sokratov S, Shnyparkov A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Nat Hazards 68(3):1217–1241. CrossRefGoogle Scholar
  28. Gallart F, Clotet N (1988) Some aspects of the geomorphic process triggered by an extreme rainfall event: the November 1982 flood in the Eastern Pyrenees. Catena Suppl 13:75–95Google Scholar
  29. García Couto MA (ed) (2011) Iberian climate atlas. Agencia Estatal de Meteorología (España) and Instituto de Meteorología (Portugal), Madrid, Spain, 79.Google Scholar
  30. Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. CrossRefGoogle Scholar
  31. Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12:829–842. CrossRefGoogle Scholar
  32. González Moradas MR, Lima de Montes Y (2001) Cartografía de los deslizamientos en la zona central del Principado de Asturias. Mapping 73:6–15Google Scholar
  33. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York, USA, 395 ppGoogle Scholar
  34. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267. CrossRefGoogle Scholar
  35. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. CrossRefGoogle Scholar
  36. INE-Instituto Nacional de Estadística (2015) Cifras oficiales del Padrón municipal. [on line]. [accessed 16/03/2017]
  37. Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54:137–156. CrossRefGoogle Scholar
  38. Jan CD, Chen CL (2005) Debris flows caused by typhoon Herb in Taiwan. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin Heidelberg, pp 363–385Google Scholar
  39. Jiménez-Sánchez M, Ballesteros D, Rodríguez-Rodríguez L, Domínguez-Cuesta MJ (2014) The Picos de Europa national and regional parks. In: Gutiérrez F, Gutiérrez M (eds) Landscapes and landforms of Spain. Springer, World Geomorphological Landscapes, pp 155–163CrossRefGoogle Scholar
  40. Marcos A (2004) Zona Asturoccidental-Leonesa. In: Vera JA (ed) Geología de España, SGE-IGME, pp 49–68Google Scholar
  41. Marques R, Zêzere JL, Trigo R, Gaspar J, Trigo I (2008) Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): relationships with the North Atlantic Oscillation. Hydrol Process 22(4):478–494. CrossRefGoogle Scholar
  42. Marquínez J, Menéndez Duarte RA, Fernández Menéndez S, Fernández Iglesias E, Jiménez B, Wozniak E, Lastra J, Roces J, Adrados L (2003) Riesgos Naturales en Asturias. Principado de Asturias-INDUROT, KRK Ediciones. 133.Google Scholar
  43. Martínez J, Menéndez-Duarte R, Lastra J (2005) Modelo de susceptibilidad de movimientos en masa profundos para Asturias (Norte de España). Revista CG 19(3–4):23–35Google Scholar
  44. Mateos RM, García-Moreno I, Azañón JM (2012) Freeze–thaw cycles and rainfall as triggering factors of mass movements in a warm Mediterranean region: the case of the Tramuntana Range (Majorca, Spain). Landslides 9(3):417–432. CrossRefGoogle Scholar
  45. Mathew J, Giri Babu D, Kundu S, Vinod Kumar K, Pant CC (2014) Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India. Landslides 11:575–588. CrossRefGoogle Scholar
  46. McGuire B, Mason I, Kilburn C (2002) Natural hazards and environmental change. Arnold Publishers, London, pp 1–187Google Scholar
  47. Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Roccati A, Guzzetti F (2018) A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ Model Softw 105:230–243. CrossRefGoogle Scholar
  48. Menéndez-Duarte RA, Marquínez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology 43(1):117–136. CrossRefGoogle Scholar
  49. Moya J (2002) Determinación de la edad y de la periodicidad de los deslizamientos en el Prepirineo oriental. PhD dissertation, Universitat Politècnica de Catalunya, Spain, 282.Google Scholar
  50. Moya J, Corominas J (1997) Condiciones pluviométricas desencadenantes de deslizamientos en el Pirineo Oriental. In: Alonso E (ed) IV Simposio Nacional sobre Taludes y Laderas Instables, vol 1. Granada, Spain, pp 199–212Google Scholar
  51. Naidu S, Sajinkumar KS, Oommen T, Anuja VJ, Samuel RA, Muraleedharan C (2017) Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci Front. In Press 9(6):1871–1882. CrossRefGoogle Scholar
  52. Palenzuela JA, Jiménez-Perálvarez JD, Chacón J, Irigaray C (2016) Assessing critical rainfall thresholds for landslide triggering by generating additional information from a reduced database: an approach with examples from the Betic Cordillera (Spain). Nat Hazards 84(1):185–212. CrossRefGoogle Scholar
  53. Papathoma-Köhle M, Zischg A, Fuchs S, Glade T, Keiler M (2015) Loss estimation for landslides in mountain areas - an integrated toolbox for vulnerability assessment and damage documentation. Environ Model Softw 63:156–169. CrossRefGoogle Scholar
  54. Pedrozzi G (2004) Triggering of landslides in canton Ticino (Switzerland) and prediction by the rainfall intensity and duration method. Bull Eng Geol Environ 63:281–291CrossRefGoogle Scholar
  55. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  56. Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139-140:79–90CrossRefGoogle Scholar
  57. Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39–57. CrossRefGoogle Scholar
  58. Piciullo L, Calvello M, Cepeda JM (2018) Territorial early warning systems for rainfall-induced landslides. Earth Sci Rev 179:228–247. CrossRefGoogle Scholar
  59. Rodríguez-Rodríguez L, Jiménez-Sánchez M, Domínguez-Cuesta MJ, Aranburu A (2015) Research history on glacial geomorphology and geochronology of the Cantabrian Mountains, north Iberia (43–42 N/7–2 W). Quat Int 364:6–21. CrossRefGoogle Scholar
  60. Rossi M, Luciani S, Valigi D, Kirschbaum D, Brunetti MT, Peruccacci S, Guzzetti F (2017) Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 285:16–27. CrossRefGoogle Scholar
  61. SADEI-Sociedad Asturiana de Estudios Económicos e Industriales (2016) Datos Básicos de Asturias 2016. Gobierno del Principado de Asturias. Oviedo, Spain, p 89Google Scholar
  62. San Millán Revuelta E (2015) The influence of precipitations on the occurrence of landslides in Cantabria. Universidad de Cantabria, Spain, Master dissertation, 50 ppGoogle Scholar
  63. Sattari MT, Joudi AR, Kusiak A (2016) Assessment of different methods for estimation of missing data in precipitation studies. Hydrol Res 48(4):1032–1044CrossRefGoogle Scholar
  64. Segoni S, Piciullo L, Gariano SL (2018) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15:1483–1501. CrossRefGoogle Scholar
  65. Staley DM, Kean JW, Cannon SH, Schmidt KM, Laber JL (2012) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10:547–562CrossRefGoogle Scholar
  66. Trigo RM, Zêzere JL, Rodrigues ML, Trigo IF (2005) The influence of the North Atlantic oscillation on rainfall triggering of landslides near Lisbon. Nat Hazards 36:331–354CrossRefGoogle Scholar
  67. Valenzuela P, Domínguez-Cuesta MJ, Mora García MA, Jiménez-Sánchez M (2017) A spatio-temporal landslide inventory for the NW of Spain: BAPA database. Geomorphology 293:11–23. CrossRefGoogle Scholar
  68. Valenzuela P, Domínguez-Cuesta MJ, Mora García MA, Jiménez-Sánchez M (2018a) Rainfall thresholds for the triggering of landslides considering previous soil moisture conditions (Asturias, NW Spain). Landslides 15:273–282. CrossRefGoogle Scholar
  69. Valenzuela P, Iglesias M, Domínguez-Cuesta MJ, Mora García MA (2018b) Meteorological patterns linked to landslide triggering in Asturias (NW Spain): a preliminary analysis. Geosciences 8(1):18. CrossRefGoogle Scholar
  70. Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Montanarella L, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369. CrossRefGoogle Scholar
  71. Vaz T, Zêzere JL, Pereira S, Oliveira S, Garcia RAC, Quaresma I (2018) Regional rainfall thresholds for landslide occurrence using a centenary database. Nat Hazards Earth Syst Sci 18(4):1037–1054. CrossRefGoogle Scholar
  72. Vennari C, Gariano SL, Antronico L, Brunetti MT, Iovine G, Peruccacci S, Terranova O, Guzzetti F (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14:317–330CrossRefGoogle Scholar
  73. Vessia G, Parise M, Brunetti MT, Peruccacci S, Rossi M, Vennari C, Guzzetti F (2014) Automated reconstruction of rainfall events responsible for shallow landslides. Nat Hazards Earth Syst Sci 14(9):2399–2408. CrossRefGoogle Scholar
  74. Wieczorek GF (1996) Landslides triggering mechanisms. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Research Council, Transportation Research Board, Washington, pp 76–90Google Scholar
  75. Zêzere JL, Trigo R (2011) Impacts of the NAO on landslides. In: Vicente-Serrano SM, Trigo R (eds) Hydrological, socioeconomic and ecological impacts of the North Atlantic Oscillation in the Mediterranean Region. Advances in global change research, 46. Springer, pp 199-212Google Scholar
  76. Zêzere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5:331–344CrossRefGoogle Scholar
  77. Zêzere JL, Trigo R, Fragoso M, Oliveira S, Garcia RAC (2008) Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 8:483–499. CrossRefGoogle Scholar
  78. Zêzere JL, Vaz T, Pereira S, Oliveira SC, Marqués R, García RAC (2015) Rainfall thresholds for landslide activity in Portugal: a state of the art. Environ Earth Sci 73:2917–2936CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de GeologíaUniversidad de OviedoOviedoSpain
  2. 2.Centro de Estudos Geográficos, IGOTUniversidade de LisboaLisbonPortugal
  3. 3.Agencia Estatal de MeteorologíaDelegación Territorial en Castilla y LeónValladolidSpain

Personalised recommendations