Advertisement

Landslides

pp 1–13 | Cite as

Landslides induced by the 2010 Chile megathrust earthquake: a comprehensive inventory and correlations with geological and seismic factors

  • Alejandra SereyEmail author
  • Laura Piñero-Feliciangeli
  • Sergio A. Sepúlveda
  • Fernando Poblete
  • David N. Petley
  • William Murphy
Original Paper

Abstract

The 2010 Mw = 8.8 Maule earthquake, which occurred in the subduction contact between the Nazca and the South American tectonic plates off the coast of Chile, represents an important opportunity to improve understanding of the distribution and controls for the generation of landslides triggered by large megathrust earthquakes in subduction zones. This paper provides the analysis of the comprehensive landslide inventory for the Maule earthquake between 32.5° S and 38.5° S. In total, 1226 landslides were mapped over a total area of c. 120,500 km2, dominantly disrupted slides. The total landslide volume is c. 10.6 Mm3. The events are unevenly distributed in the study area, the majority of landslides located in the Principal Andean Cordillera and a very constrained region near the coast on the Arauco Peninsula, forming landslide clusters. Statistical analysis of our database suggests that relief and lithology are the main geological factors controlling coseismic landslides, whilst the seismic factor with higher correlation with landslide occurrence is the ratio between peak horizontal and peak vertical ground accelerations. The results and comparison with other seismic events elsewhere suggest that the number of landslides generated by megathrust earthquakes is lower than events triggered by shallow crustal earthquakes by at least one or two orders of magnitude, which is very important to consider in future seismic landslide hazard analysis.

Keywords

Coseismic landslides Megathrust earthquake Chile 

Notes

Acknowledgments

We thank valuable comments by D.R. Tippin and two anonymous reviewers that allowed improvement of the manuscript. Mapping work collaboration and support by S. Moya, J. Tondreau, C. Apablaza, M. Froude and M. Brain are greatly acknowledged. Figures 3 and 6 were prepared with the Generic Mapping Tools (Wessel and Smith 1998).

Funding information

 This work is supported by the RCUK-Conicyt Newton Fund International Cooperation Programme Project NE/N000315/1 “Seismically-induced landslides in Chile: New tools for hazard assessment and disaster prevention” and Fondecyt project 1140317.

Supplementary material

10346_2019_1150_MOESM1_ESM.docx (525 kb)
ESM 1 (DOCX 525 kb)

References

  1. Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Annu Rev Earth Planet Sci 25(1):139–174CrossRefGoogle Scholar
  2. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334CrossRefGoogle Scholar
  3. Astroza M, Ruiz S, Astroza R (2012) Damage assessment and seismic intensity analysis of the 2010 (Mw 8.8) Maule earthquake. Earthquake Spectra 28(S1):S145–S164CrossRefGoogle Scholar
  4. Barrientos SE (2010) Terremoto (M= 8.8) del 27 de febrero de 2010 en Chile. Rev Asoc Geol Argent 67(3):412–420Google Scholar
  5. Bird P (2003) An updated digital model of plate boundaries. GeochemGeophysGeosyst 4(1):1027Google Scholar
  6. Boroschek R, Contreras V, Kwak DY, Stewart JP (2012) Strong ground motion attributes of the 2010 Mw 8.8 Maule, Chile, earthquake. Earthquake Spectra 28(S1):S19–S38CrossRefGoogle Scholar
  7. Brain MJ, Rosser NJ, Norman EC, Petley DN (2014) Are microseismic ground displacements a significant geomorphic agent? Geomorphology 207:161–173CrossRefGoogle Scholar
  8. Campos J, Hatzfeld D, Madariaga R, Lopez G, Kausel E, Zollo A, Barrientos S, Lyon-Caen H (2002) The 1835 seismic gap in South Central Chile. Phys Earth Planet Inter 132:177–195CrossRefGoogle Scholar
  9. Charrier R, Ramos VA, Tapia F, Sagripanti L (2015) Tectono-stratigraphic evolution of the Andean Orogen between 31 and 37° S (Chile and Western Argentina). Geological Society Special Publications, London, pp 13–61Google Scholar
  10. Cisternas A (2011) El país más sísmico del mundo. Revista Anales Séptima SerieGoogle Scholar
  11. Dai FC, Xu C, Yao X, Xu L, Tu XB, Gong QM (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake. China JAsian Earth Sci 40(4):883–895Google Scholar
  12. Delouis B, Nocquet JM, Vallée M (2010) Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and Broadband teleseismic data. Geophys Res Lett 37(17):L17305.  https://doi.org/10.1029/2010GL043899 CrossRefGoogle Scholar
  13. Densmore A, Hovius N (2000) Topographic fingerprints of bedrock landslides. Geology 28(4):371–374CrossRefGoogle Scholar
  14. Escobar P (2013) Inventario de remociones en masa desencadenadas por el sismo del 27 de febrero de 2010 en Chile central. Universidad de Chile, Departamento de Geología, Memoria de títuloGoogle Scholar
  15. Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133:152–167.  https://doi.org/10.1016/j.geomorph.2010.12.030 CrossRefGoogle Scholar
  16. Havenith HB, Torgoev A, Braun A, Schlögel R, Micu M (2016) A new classification of earthquake-induced landslide event sizes based on seismotectonic, topographic, climatic and geologic factors. Geoenvironmental Disasters 3(1):6CrossRefGoogle Scholar
  17. Huang CC, Lee YH, Liu HP, Keefer DK, Jibson RW (2001) Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake. Bull Seismol Soc Am 91(5):953–958CrossRefGoogle Scholar
  18. Idini B, Rojas F, Ruiz S, Pastén C (2017) Ground motion prediction equations for the Chilean subduction zone. Bull Earthq Eng 15(5):1853–1880CrossRefGoogle Scholar
  19. Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res Solid Earth 93(B4):3211–3231CrossRefGoogle Scholar
  20. Jibson RW, Harp EL, Schulz W, Keefer DF (2006) Large rock avalanches triggered by the M 7.9 Denali fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160CrossRefGoogle Scholar
  21. Jordan TE, Isacks B, Allmendinger R, Brewer J, Ramos V, Ando C (1983) Andean tectonics related to geometry of the subducted Nazca plate. Geol Soc Am Bull 94:341–361CrossRefGoogle Scholar
  22. Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101(4):631–642CrossRefGoogle Scholar
  23. Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421CrossRefGoogle Scholar
  24. Keefer DK (2000) Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta, California event. Eng Geol 58(3):231–249CrossRefGoogle Scholar
  25. Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3(4):247–251CrossRefGoogle Scholar
  26. Lay T, Ammon CJ, Kanamori H, Koper KD, Sufri O, Hutko AR (2010) Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophys Res Lett 37(13):L13301.  https://doi.org/10.1029/2010GL043379 CrossRefGoogle Scholar
  27. Lorito S, Romano F, Atzori F, Tong X, Avallone A, McCloskey J, Cocco M, Boshi E, Piatanesi A (2011) Limited overlap between the seismic gap and co-seismic slip of the great 2010 Chilean earthquake. Nature Geoscience Letters 4(3):173–177CrossRefGoogle Scholar
  28. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004a) Landslide inventories and their statistical properties. Earth Surf Process Landf 29(6):687–711CrossRefGoogle Scholar
  29. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004b) Landslides, earthquakes, and erosion. Earth Planet Sci Lett 229(1–2):45–59CrossRefGoogle Scholar
  30. Marc O, Hovius N, Meunier P, Gorum T, Uchida T (2016) A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding. J Geophys Res Earth Surf 121(4):640–663CrossRefGoogle Scholar
  31. Mardones M, Rojas J (2012) Procesos de remoción en masa inducidos por el terremoto del 27F de 2010 en la franja costera de la Región del Biobío, Chile. Revista de Geografía Norte Grande 53:57–74CrossRefGoogle Scholar
  32. Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275:221–232CrossRefGoogle Scholar
  33. Moreno M, Klotz J, Melnick D, Echtler H, Bataille K (2008) Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39 S). Geochem Geophys Geosyst 12:Q12024Google Scholar
  34. Moya S (2016) Comportamiento monotónico y cíclico de suelos y rocas blandas afectadas por remociones en masa cosísmicas. Universidad de Chile, Departamento de GeologíaGoogle Scholar
  35. Moya S, Sepúlveda SA, Serey A, García M (2015) Remociones en masa generadas por el terremoto del Maule del 2010 en la Península de Arauco. In XIV Congreso Geológico de Chile Actas, La SerenaGoogle Scholar
  36. Owen LA, Kamp U, Khattak GA, Harp EL, Keefer DK, Bauer MA (2008) Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94(1):1–9CrossRefGoogle Scholar
  37. Pankhurst R, Hervé F (2007) Introduction and overview. The Geological Society of London, pp 1–4Google Scholar
  38. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6(3):233–248CrossRefGoogle Scholar
  39. Qi S, Xu Q, Lan H, Zhang B, Liu J (2010) Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan earthquake. China Engineering Geology 116(1–2):95–108CrossRefGoogle Scholar
  40. Rodriguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980-1997. Soil Dyn Earthq Eng 18:325–346CrossRefGoogle Scholar
  41. Ruegg JC, Rudloff A, Vigny C, Madariaga R, De Chabalier JB, Campos J, Kausel E, Barrientos S, Dimitrov D (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Phys Earth Planet Inter 175:78–85CrossRefGoogle Scholar
  42. Ruiz S, Madariaga R, Astroza M, Saragoni R, Lancieri M, Vigny C, Campose J (2012) Short-period rupture process of the 2010 Mw 8.8 Maule earthquake in Chile. Earthquake Spectra 28(S1):S1–S18CrossRefGoogle Scholar
  43. Saragoni R, y Ruiz S (2012) Implicancias y nuevos desafíos del diseño sísmico de los acelerógramas del Terremoto del 2010, en Mw=8.8: Terremoto en Chile, 27 de febrero 2010. Primera edn, Departamento Ingeniería Civil FCFM Universidad de Chile, pp 127-146Google Scholar
  44. Sato H, Hasegawa H, Fujiwara S, Tobita M, Koarai M, Une H, Iwahashi J (2007) Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landlsides 4:113–122Google Scholar
  45. Sepúlveda SA, Murphy W, Petley DN (2005) Topographic controls on coseismic rock slides during the 1999 Chi-Chi Earthquake, Taiwan. Q J Eng Geol Hydrogeol 38:189–196CrossRefGoogle Scholar
  46. Sepúlveda SA, Serey A, Lara M, Pavez A, Rebolledo S (2010) Landslides induced by the 2007 Aysen Fjord earthquake, Chilean Patagonia. Landslides 7(4):483–492CrossRefGoogle Scholar
  47. Serey A, Escobar P, Moya S, Sepúlveda SA, Petley D (2017) Landslide inventory of the 2010 Mw 8.8 Maule earthquake, Central Chile. 16th world conference on earthquake 16WCEE 2017: 1873Google Scholar
  48. SERNAGEOMIN (2003) Mapa Geológico de Chile a escala 1:1.000.000: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital N°4Google Scholar
  49. Sheffels BM (1990) Lower bound on the amount of crustal shortening, in the central Bolivian Andes. Geology 18(9):812–815CrossRefGoogle Scholar
  50. Soeters R, Van Western CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK and Schuster RL (eds). Landslides, investigation and mitigation. Transportation Research Board, National Research Council, special report 247, National Academy Press, Washington D.C., U.S.A., 129–177Google Scholar
  51. Terzaghi K (1950) Mechanisms of landslides, application of geology to engineering practice. Berkey Volume S Geological Soc. of AmericaGoogle Scholar
  52. Tong X, Sandwell D, Luttrell K, Brooks B, Bevis M, Shimada M, Foster J, Smalley R, Parra H, Baez JC, Blanco M, Kendrick E, Genrich J, Caccamise D (2010) The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy. Geophys Res Lett 37(24):L24311CrossRefGoogle Scholar
  53. Verdugo R, González J, González V, Torres A (2012) Características y efectos del fenómeno de licuefacción. En Mw=8.8: Terremoto en Chile, 27 de febrero 2010. Primera edn., Departamento Ingeniería Civil FCFM Universidad de ChileGoogle Scholar
  54. Wartman J, Dunham L, Tiwari B, Pradel D (2013) Landslides in Eastern Honshu induced by the 2011 off the Pacific Coast of Tohoku earthquake. Bull Seismol Soc Am 103(2B):1503–1521CrossRefGoogle Scholar
  55. Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS Trans Am Geophys Union 79(47):579–579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de GeologíaUniversidad de ChileSantiagoChile
  2. 2.Instituto de Ciencias de la IngenieríaUniversidad de O’HigginsRancaguaChile
  3. 3.Department of GeographyUniversity of SheffieldSheffieldEngland
  4. 4.School of Earth and EnvironmentUniversity of LeedsLeedsEngland

Personalised recommendations