Advertisement

Landslides

pp 1–14 | Cite as

Two methodologies to calibrate landslide runout models

  • Jordan AaronEmail author
  • Scott McDougall
  • Natalia Nolde
Original Paper
  • 53 Downloads

Abstract

Extremely rapid, flow-like landslides pose a significant hazard worldwide; however, the analysis of the impact area and velocity of these flows is not routine. Semi-empirical numerical models are one tool that is available for performing this sort of analysis. These models are physically based; however, certain input parameters are determined through model calibration, using back-analysis of real landslide cases. Objective, repeatable calibration methods are needed for this approach to be useful for landslide runout prediction. The present analysis describes the application of optimization theory and Bayesian statistics to calibrate these types of models. Two complementary methods are presented. The first uses the Gauss-Marquardt-Levenberg optimization algorithm to efficiently determine a set of best-fit calibrated model parameters. The second uses a posterior analysis to quantify errors associated with parameter calibration, which can then be used for probabilistic forward analysis. Three case histories are presented to demonstrate how the new methods are able to rapidly calibrate a runout model, reduce subjectivity inherent in the calibration process, and provide information on parameter uncertainty.

Keywords

Runout modeling Flow-like landslides Hazard mapping Rock avalanche Flowslide 

Notes

Acknowledgements

This paper was greatly improved by many insightful conversations with Oldrich Hungr. We are grateful to two anonymous reviewers for providing thorough and constructive comments that improved the manuscript.

Funding information

Financial support for this work was provided by a graduate scholarship given by the Natural Science and Engineering Research Council of Canada (NSERC), as well as scholarships given by the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia.

References

  1. Aaron J (2017) Advancement and calibration of a 3D numerical model for landslide runout analysis, PhD Thesis, University of British ColumbiaGoogle Scholar
  2. Aaron J, Hungr O (2016a) Dynamic simulation of the motion of partially-coherent landslides. Eng Geol 205:1–11.  https://doi.org/10.1016/j.enggeo.2016.02.006 CrossRefGoogle Scholar
  3. Aaron J, Hungr O (2016b) Dynamic analysis of an extraordinarily mobile rock avalanche in the Northwest Territories, Canada. Can Geotech J 53(6):899–908.  https://doi.org/10.1139/cgj-2015-0371 CrossRefGoogle Scholar
  4. Aaron J, McDougall S, Moore JR, Coe JA, Hungr O (2017) The role of initial coherence and path materials in the dynamics of three rock avalanche case histories. Geoenviron Dis 4(1):5.  https://doi.org/10.1186/s40677-017-0070-4 CrossRefGoogle Scholar
  5. Allstadt K (2013) Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms. J Geophys Res Earth Surf 118:1472–1490.  https://doi.org/10.1002/jgrf.20110 CrossRefGoogle Scholar
  6. BGC Engineering Inc. (2000) Geotechnical hazard assessment of the south flank of Frank Slide, Hillcrest, Alberta. Report to Alberta Environment, No 00–0153Google Scholar
  7. Boultbee N (2005) Characterization of the Zymoetz River Rock Avalanche, Masters Thesis. Simon Fraser UniversityGoogle Scholar
  8. Boultbee N, Stead D, Schwab J, Geertsema M (2006) The Zymoetz River rock avalanche, June 2002, British Columbia, Canada. Eng Geol 83(1–3):76–93.  https://doi.org/10.1016/j.enggeo.2005.06.038 CrossRefGoogle Scholar
  9. Brezzi L, Bossi G, Gabrieli F, Marcato G, Pastor M, Cola S (2016) A new data assimilation procedure to develop a debris flow run-out model. Landslides 13(5):1083–1096.  https://doi.org/10.1007/s10346-015-0625-y CrossRefGoogle Scholar
  10. Calvello M, Cuomo S, Ghasemi P (2017) The role of observations in the inverse analysis of landslide propagation. Comput Geotech 92:11–21.  https://doi.org/10.1016/j.compgeo.2017.07.011 CrossRefGoogle Scholar
  11. Cepeda J, Chávez JA, Cruz Martínez C (2010) Procedure for the selection of runout model parameters from landslide back-analyses: application to the metropolitan area of San Salvador, El Salvador. Landslides 7(2):105–116.  https://doi.org/10.1007/s10346-010-0197-9 CrossRefGoogle Scholar
  12. Cruden DM, Hungr O (1986) The debris of the Frank Slide and theories of rockslide–avalanche mobility. Can J Earth Sci 23(3):425–432.  https://doi.org/10.1139/e86-044 CrossRefGoogle Scholar
  13. Cruden D, Krahn J (1978) Frank Rockslide, Alberta, Canada. In: Voight B (ed) Rockslides and avalanches, Vol 1 Natural phenomena. Elsevier Scientific Publishing, Amsterdam, pp 97–112CrossRefGoogle Scholar
  14. Doherty J (2010) PEST, model-independent parameter estimation (Vol. 2005). Watermark Numerical ComputingGoogle Scholar
  15. Evans SG, Hungr O, Enegren E (1994) The Avalanche Lake rock avalanche, Mackenzie Mountains, Northwest Territories, Canada: description, dating and dynamics. Can Geotech J 31(5):749–768CrossRefGoogle Scholar
  16. Galas S, Dalbey K, Kumar D, Patra A, Sheridan M (2007) Benchmarking TITAN2D mass flow model against a sand flow experiment and the 1903 Frank Slide. In: Ho K, Li V (eds) 2007 International forum on landslide disaster management. Geotechnical Division, The Hong Kong Institution of Civil Engineers, Hong Kong, pp 899–917Google Scholar
  17. Gregory P (2010) Bayesian logical data analysis for the physical sciences: a comparative approach with Mathematica® support. Cambridge University Press, CambridgeGoogle Scholar
  18. Heiser M, Scheidl C, Kaitna R (2017) Evaluation concepts to compare observed and simulated deposition areas of mass movements. Comput Geosci 21(3):335–343.  https://doi.org/10.1007/s10596-016-9609-9 CrossRefGoogle Scholar
  19. Hsieh WW (2009) Machine learning methods in the environmental sciences: neural networks and kernels. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows and avalanches. Can Geotech J 32(4):610–623.  https://doi.org/10.1139/t95-063 CrossRefGoogle Scholar
  21. Hungr O (2016) A review of landslide hazard and risk assessment methodology. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes. Experience, theory and practice: Proceedings of the 12th International Symposium on Landslides (Napoli, Italy, 12-19 June 2016). CRC press, London, pp 3–27Google Scholar
  22. Hungr O (2017) Chapter 9 - runout analysis. In: Hawley M, Cunning J (eds) Guidelines for mine waste dump and stockpile design. CSIRO PublishingGoogle Scholar
  23. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116(9):1240–1252.  https://doi.org/10.1130/B25362.1 CrossRefGoogle Scholar
  24. Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35(5):978–992.  https://doi.org/10.1016/j.cageo.2007.12.003 CrossRefGoogle Scholar
  25. Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21(4):663–677.  https://doi.org/10.1139/t84-073 CrossRefGoogle Scholar
  26. Hungr O, Dawson RF, Kent A, Campbell D, Morgenstern NR (2002) Rapid flow slides of coal-mine waste in British Columbia, Canada. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms, vol XV. Geological Society of America Reviews in Engineering Geology, Boulder, pp 191–208CrossRefGoogle Scholar
  27. Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanism, travel distance and velocity—state of the art report. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. A.A. Balkema, Amsterdam, pp 99–128CrossRefGoogle Scholar
  28. Hungr O, Morgenstern NR, Wong HN (2007) Review of benchmarking exercise on landslide debris runout and mobility modelling. In: Ho, Li (eds) Proceedings of the International Forum on Landslide Disaster Management. Hong Kong Geotechnical Engineering Office, pp 775–812Google Scholar
  29. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194CrossRefGoogle Scholar
  30. Keaton JR, Wartman J, Anderson S, Benoit J, DeLaChapelle J, Gilbert R, Montgomery DR (2014) The 22 March 2014 Oso Landslide , Snohomish County, Washington. Geotechnical extreme event reconnaissance association report GEER-036.  https://doi.org/10.18118/G6V884
  31. Körner HJ (1976) Reichweite und Geschwindigkeit von Bergsturzen und fleisschnee-lawinen. Rock Mech 8:225–256CrossRefGoogle Scholar
  32. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168CrossRefGoogle Scholar
  33. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441CrossRefGoogle Scholar
  34. McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain, PhD Thesis. University of British ColumbiaGoogle Scholar
  35. McDougall S (2017) 2014 Canadian Geotechnical Colloquium: landslide runout analysis—current practice and challenges. 54(5):605–620.  https://doi.org/10.1139/cgj-2016-0104
  36. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097.  https://doi.org/10.1139/t04-052 CrossRefGoogle Scholar
  37. McDougall S, Boultbee N, Hungr O, Stead D, Schwab JW (2006) The Zymoetz River landslide, British Columbia, Canada: description and dynamic analysis of a rock slide–debris flow. Landslides 3(3):195–204.  https://doi.org/10.1007/s10346-006-0042-3 CrossRefGoogle Scholar
  38. Nocedal J, Wright SJ (2006) Numerical optimization. In: Mikosch TV, Resnick SI, Robinson SM (eds) Springer series in operations research and financial engineering, 2nd edn. Springer, New YorkGoogle Scholar
  39. Prochaska AB, Santi PM, Higgins JD, Cannon SH (2008) A study of methods to estimate debris flow velocity. Landslides 5(4):431–444.  https://doi.org/10.1007/s10346-008-0137-0 CrossRefGoogle Scholar
  40. Read RS, Langenberg W, Cruden D, Field M, Stewart R, Bland H, Chen Z, Froese CR, Cavers DS, Bidwell AK, Murray C, Anderson WS, Jones A, Chen J, McIntyre D, Kenway D, Bingham DK, Weir-Jones I, Seraphim J, Freeman J, Spratt D, Lamb M, Herd E, Martin D, McLellan P, Pana D (2005) Frank Slide a century later: the Turtle Mountain monitoring project. In: Hungr O, Fell R, Couture RR, Eberhardt (eds) Landslide risk management. Balkema, Rotterdam, pp 713–723Google Scholar
  41. Schwab JW, Geertsema M, Evans SG (2003) Catastrophic rock avalanches, west-central B.C., Canada. In 3rd Canadian Conference on Geotechnique and Natural Hazards, Edmonton, pp 252–259Google Scholar
  42. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1–2):11–26.  https://doi.org/10.1016/j.enggeo.2008.02.012 CrossRefGoogle Scholar
  43. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: transportation research board. National Academy of Sciences, Washington, DC, pp 11–33Google Scholar
  44. Voellmy A (1955) Uber die Zerstorungskraft von Lawinen. Schweizeirische Bauzeitung 73:212–285Google Scholar
  45. White JL, Morgan ML, Berry KA (2015) The West Salt Creek landslide: a catastrophic rockslide and rock/debris avalanche in Mesa County, Colorado. Bulletin 55. Colorado geological survey, Golden, Colorado. Retrieved from http://store.coloradogeologicalsurvey.org/product/the-west-salt-creek-landslide-a-catastrophic-rockslide-and-rockdebris-avalanche-in-mesa-county-colorado/

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth Sciences, Geological InstituteETH ZürichZürichSwitzerland
  2. 2.Department of Earth, Ocean and Atmospheric SciencesThe University of British ColumbiaVancouverCanada
  3. 3.Department of StatisticsThe University of British ColumbiaVancouverCanada

Personalised recommendations