pp 1–16 | Cite as

Contextualizing community-based landslide risk reduction: an evolutionary perspective

  • Pavel RaškaEmail author
Thematic Issue


Following the current emphasis given to community-based action in landslide disaster risk reduction (DRR) and with reference to traditional community-based approaches, recent studies have increasingly addressed regionally diverse experiences with community engagement in DRR. In this paper, we question the mechanisms of the community-based landslide DRR throughout history. To do this, we use the original historical landslide database for NW Czechia spanning from 1531 to the present day, including 230 landslide events. Five historical periods with different political regimes and socio-economic conditions are illustrated with significant landslide phases (1770, 1895–1900, 1925–1928, 1955–1960) and individual socio-economically relevant landslides (1994). For each period, the institutional and social conditions are described, the landslide phase is characterized (number of events, triggers, impacts, and recovery) along with analyses of individual case study events, and finally the institutional analyses of stakeholders dealing with landslide recovery and future prevention are provided. We conclude that various conceptualizations of community may be assigned to individual historical periods and that the inherited and newly established practices have been combined, creating hybrid models of community-based landslide DRR and affecting both its efficiency and effectiveness. Based on our findings we argue that (i) further attention should be paid to understanding the institutional, social, and technological context that is permissive of certain approaches to community engagement; (ii) approaches to community engagement must be constantly re-evaluated, given the dynamic nature of communities’ structure and functioning; and (iii) eventual use of the traditional or historical community-based approaches and practices must be critically evaluated with respect to conditions, in which these approaches and practices were developed and transformed. Finally, we emphasize that these challenges should be explored by interdisciplinary studies employing documentary data and addressing long-term path-dependencies of DRR in specific environmental and institutional settings.


Landslides Risk reduction Community engagement Documentary data Czechia 


Funding information

This research was supported by the Czech Science Foundation [project no. GA16-02521S titled “Individual and organizational decision-making in environmental risk reduction: determinants, motivations and efficiency”].


  1. Adamson GCD, Hannaford MJ, Rohland EJ (2018) Re-thinking the present: the role of a historical focus in climate change adaptation research. Global Environ Chang 48:195–205. CrossRefGoogle Scholar
  2. Agrawal A, Gibson CC (1999) Enchantment and Disenchantment: The Role of Community in Natural Resource Conservation. World Dev 27:629–649. CrossRefGoogle Scholar
  3. Ahmed B, Kelman I (2018) Measuring community vulnerability to environmental hazards: a method for combining quantitative and qualitative data. Nat Haz Rev 19(3). CrossRefGoogle Scholar
  4. Alcantara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Gemorphology 47:107–124. CrossRefGoogle Scholar
  5. Anderson MG, Holcombe E (2013) Community-based landslide risk reduction: managing disasters in small steps. World Bank, Washington, DCCrossRefGoogle Scholar
  6. Anderson MG, Holcombe EA, Holm-Nielsen N, Della Monica R (2013) What are the emerging challenges for community-based landslide risk reduction in developing countries? Nat Haz Rev 15. CrossRefGoogle Scholar
  7. Beierle TC, Cayford J (2002) Democracy in practice: public participation in environmental decisions. Resources for the Future, Washington, DCGoogle Scholar
  8. Berkes F, Colding J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl 10:1251–1262CrossRefGoogle Scholar
  9. Bíl M, Krejčí O, Bílová M, Kubeček J, Sedoník J, Krejčí V (2014) A chronology of landsliding and its impacts on the village of Halenkovice, outer Western Carpathians. Geografie 119:342–363Google Scholar
  10. Brázdil R, Wheeler D, Pfister C (2010) European climate of the past 500 years based on documentary and instrumental data. Clim Chang 101:1–6. CrossRefGoogle Scholar
  11. Cajz V (1999) The České středohoří Mts.: volcanostratigraphy and geochemistry. Geolines 9:21–28Google Scholar
  12. Cavaye J (2004) Governance and community engagement: the Australian experience. In: Lovan WR, Murray M, Shaffer R (eds) Participatory governance. Ashgate, Aldershot, pp 85–102Google Scholar
  13. CHMI (2018) Czech Hydrometeorologic Institute. <>
  14. Cornwall M, Evans RJW (2007) Czechoslovakia in a nationalist and fascist Europe, 1918–1948. Oxford University Press, OxfordCrossRefGoogle Scholar
  15. Courtney H, Kirkland J, Viguerie P (1997) Strategy under uncertainty. Harv Bus Rev 75:66–79Google Scholar
  16. Cutter SL, Barnes L, Berry M, Burton C, Evans E, Tate E, Webb J (2008) A place-based model for understanding community resilience to natural disasters. Glob Environ Change 18:598–606. CrossRefGoogle Scholar
  17. Dekens J (2007) Local knowledge for disaster preparedness: a literature review. International Commission for Mountain Development (ICIMOD), KathmanduGoogle Scholar
  18. Folke C (2004) Traditional knowledge in social–ecological systems. Ecol Soc 9(3):7 [online] URL: CrossRefGoogle Scholar
  19. Gerrard CM, Petley DN (2013) A risk society? Environmental hazards, risk and resilience in the latter Middle Ages in Europe. Nat Haz 69:1051–1079. CrossRefGoogle Scholar
  20. Glade T, Albini P, Frances F (2001) The use of historical data in natural hazard assessments. Kluwer, DordrechtCrossRefGoogle Scholar
  21. Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI project: a bibliographical and archive inventory of landslides and floods in Italy. Environ Manag 18:623–633CrossRefGoogle Scholar
  22. Harris J (2001) Tönnies: community and civil society. Cambridge University Press, CambridgeGoogle Scholar
  23. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. CrossRefGoogle Scholar
  24. Ingrao CW (2000) The Habsburg monarchy, 1618–1815. Cambridge University Press, Cambridge–New YorkCrossRefGoogle Scholar
  25. Janku A, Schenk GJ, Mauelshagen F (2012) Historical disasters in context: science, religion, and politics. Routledge, LondonGoogle Scholar
  26. Johannes RE (1989) Introduction. In: Johannes RE (ed) Traditional ecological knowledge: a collection of essays. IUCN, Gland (Switzerland) and Cambridge, pp 5–9Google Scholar
  27. Jones EC, Murphy AD, Faas AJ, Tobin GA, McCarty C, Whiteford LM (2015) Postdisaster reciprocity and the development of inequality in personal networks. Econ Anthr 2:385–404. CrossRefGoogle Scholar
  28. Kárník Z (2000) Czech lands in the first republic 1918–1938 I. (in Czech). Libri, PrahaGoogle Scholar
  29. Kelman I (2017) Linking disaster risk reduction, climate change, and the sustainable development goals. Disaster Prev Manage: An International Journal 26(3):254–258. CrossRefGoogle Scholar
  30. Kervyn M, Jacobs L, Maes J, Che VB, de Hontheim A, Dewitte O, Isabirye M, Sekajugo J, Kabaseke C, Poesen J, Vranken L, Mertens K (2015) Landslide resilience in equatorial Africa: moving beyond problem identification! BelGeo − Revue belge de géographie 2015(1):1–22. CrossRefGoogle Scholar
  31. Klenk NL, Meehan K, Pinel SL, Mendez F, Lima PT, Kammen DM (2015) Stakeholders in climate science: beyond lip service? Science 350:743–744. CrossRefGoogle Scholar
  32. Klíma A (1989) Domestic industry, manufactory and early industrialization in Bohemia. J Eur Econ History 18:509–527Google Scholar
  33. Klimeš J, Stemberk J, Blahůt J, Krejčí V, Krejčí O, Hartvich F, Kycl P (2017) Challenges for landslide hazard and risk management in ‘low-risk’ regions, Czech Republic − landslide occurrences and related costs (IPL project no. 197). Landslides 14:771–780. CrossRefGoogle Scholar
  34. Klose M, Damm B, Highland L (2015) Databases in geohazard science: an introduction. Geomorphology 249:1–3. CrossRefGoogle Scholar
  35. Klose M, Maurischat P, Damm B (2016) Landslide impacts in Germany: a historical and socioeconomic perspective. Landslides 13:183–199. CrossRefGoogle Scholar
  36. Krejčí J (1972) Social change and stratification in postwar Czechoslovakia. Macmillan, LondonCrossRefGoogle Scholar
  37. Krejčí J, Machonin (1998) Czechoslovakia 1918–1992. Macmillan, HoundmillsGoogle Scholar
  38. Krejčí O, Bíl M, Jurová Z, Rybář J (2002) Slope instability hazard evaluation in the Flysch Western Carpathians (Czech Republic). In: Instability, planning and management. Thomas Telford Publishing, London, pp 305–312Google Scholar
  39. Krüger F, Bankoff G, Cannon T, Orlowski B, Schipper ELF (2015) Introduction. In: Krüger F, Bankoff G, Cannon T, Orlowski B, Schipper ELF (eds) Cultures and disasters: understanding cultural framings in disaster risk reduction. Routledge, Abingdon, pp 1–16CrossRefGoogle Scholar
  40. Kurka J, Smolík R, Zavoral J (1995) Final report of engineering-geological survey and geotechnical control monitoring − landslide Vaňov (in Czech). Czech Geological Survey, PragueGoogle Scholar
  41. Kycl P, Rapprich V, Radoň M (2012) Geological setting of the Vaňov landslide area. Geosci Rep 45:82–86Google Scholar
  42. Lidskog R (2008) Scientised citizens and democratised science. Reassessing the expert-lay divide. J Risk Res 11:69–86. CrossRefGoogle Scholar
  43. Lovan WR, Murray M, Shaffer R (2004) Participatory governance. Ashgate, AldershotGoogle Scholar
  44. Mauch C, Pfister C (2009) Natural disasters, cultural responses. Case studies toward a global environmental history. Lexington Books, LanhamGoogle Scholar
  45. McEwen L, Garde-Hansen J, Holmes A, Jones O, Krause F (2017) Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk. Trans Inst Br Geo 42:14–28. CrossRefGoogle Scholar
  46. Mercer J, Kelman I, Taranis L, Suchet-Pearson S (2010) Framework for integrating indigenous and scientific knowledge for disaster risk reduction. Disasters 34(1):214–239. CrossRefGoogle Scholar
  47. Munene MB, Swartling ÅG, Thomalla F (2018) Adaptive governance as a catalyst for transforming the relationship between development and disaster risk through the Sendai framework? Int J Dis Risk Red. CrossRefGoogle Scholar
  48. MunichRe (2017) TopicsGeo: natural catastrophes 2016 − analyses, assessments, positions. MunichRe, MunichGoogle Scholar
  49. Novotný J, Smejkalová T, Rybář J (2013) Activation of slope movement in the landslide area of the abandoned Ohře River meander in Žatec. Geoscience Rep 46:143–148Google Scholar
  50. Pánek T, Smolková V, Hradecký J, Baroň I, Šilhán K (2013) Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia). Quat Res 80:33–46. CrossRefGoogle Scholar
  51. Parker DJ, Handmer JW (1998) The role of unofficial flood warning systems. J Cont Crisis Manag 6:45–60. CrossRefGoogle Scholar
  52. Peters-Guarin G, McCall MK, van Westen C (2012) Coping strategies and risk manageability: using participatory geographical information systems to represent local knowledge. Disasters 36:1–27. CrossRefGoogle Scholar
  53. Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930. CrossRefGoogle Scholar
  54. Pfister C, Brázdil R (2006) Social vulnerability to climate in the “Little Ice Age”: an example from Central Europe in the early 1770s. Clim Past 2:115–129. CrossRefGoogle Scholar
  55. Raška P, Brázdil R (2015) Participatory responses to historical flash floods and their relevance for current risk reduction: a view from a post-communist country. Area 47:166–178. CrossRefGoogle Scholar
  56. Raška P, Dostál P (2017) Evolution of disaster relief law under multiple transformations: progressive learning or walking in a circle? Environ Sci Pol 76:124–130. CrossRefGoogle Scholar
  57. Raška P, Dubišar J (2017) Impacts of natural hazards on an early industrial community: a case study of North Bohemia and its implications for long-term vulnerability assessment. Moravian Geo Rep 25:13–23. CrossRefGoogle Scholar
  58. Raška P, Zábranský V, Dubišar J, Kadlec A, Hrbáčová A, Strnad T (2014a) Documentary proxies and interdisciplinary research on historic geomorphologic hazards: a discussion of the current state from a central European perspective. Nat Haz 70:705–732. CrossRefGoogle Scholar
  59. Raška P, Hartvich F, Cajz V, Adamovič J (2014b) Structural setting of the Čertovka landslide (Ústí nad Labem, Czech Republic): morphostructural analysis and electrical resistivity tomography. Geol Q 58:85–98. CrossRefGoogle Scholar
  60. Raška P, Klimeš J, Dubišar J (2015) Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: examples from regions with different historical development. Land Degrad Dev 26:142–157. CrossRefGoogle Scholar
  61. Raška P, Zábranský V, Brázdil R, Lamková J (2016) The late Little Ice Age landslide calamity in North Bohemia: triggers, impacts and post-landslide development reconstructed from documentary data (case study of the Kozí vrch Hill landslide). Geomorphology 255:95–107. CrossRefGoogle Scholar
  62. Renn O (2008) Risk governance. Earthscan, London-New YorkCrossRefGoogle Scholar
  63. Renn O, Klinke A, van Asselt M (2011) Coping with complexity, uncertainty and ambiguity in risk governance: a synthesis. AMBIO: J Hum Environ 40:231–246. CrossRefGoogle Scholar
  64. Rybář J (1991) Untersuchung der Hangbewegungen in der ČSFR. Felsbau 9:178–181Google Scholar
  65. Sangster H, Jones C, Macdonald N (2018) The co-evolution of historical source materials in the geophysical, hydrological and meteorological sciences: learning from the past and moving forward. Prog Phys Geo 42:61–82. CrossRefGoogle Scholar
  66. Schenk GJ (2015) Learning from history? Chances, problems and limits of learning from historical natural disasters. In: Krüger F, Bankoff G, Cannon T, Orlowski B, Schipper ELF (eds) Cultures and disasters. Understanding cultural framings in disaster risk reduction. Routledge, London, pp 72–87Google Scholar
  67. Sjöberg L (1999) Risk perception by the public and by experts: a dilemma in risk management. Hum Ecol Rev 6:1–9Google Scholar
  68. Slavíková L, Syrbe R-U, Slavík J, Berens A (2017) Local environmental NGO roles in biodiversity governance: a Czech-German comparison. GeoScape 11:1–15. CrossRefGoogle Scholar
  69. Smith M, Petley DN (2009) Environmental hazards: assessing risk and reducing disaster. Routledge, LondonCrossRefGoogle Scholar
  70. Špůrek M (1967) Historical analysis of influence of the climatic factor on landsliding in Bohemian Massif (in Czech). Dissertation thesis. Archive of the Czech Geological Survey – Geofond, PragueGoogle Scholar
  71. Špůrek M (1969) Retrospective analyses of complex landslides: case study of the Hazmburk Hill near the Libochovice Town. Sborník geologických věd R.HIG 7:61–79Google Scholar
  72. Steinberg T (2000) Acts of god. The unnatural history of natural disaster in America. Oxford University Press, New YorkGoogle Scholar
  73. Sudmeier-Rieux K, Jaquet S, Derron M-H, Jaboyedoff M, Devkota S (2012) A case study of coping strategies and landslides in two villages of Central-Eastern Nepal. Appl Geo 32:680–690. CrossRefGoogle Scholar
  74. Tropeano D, Turconi L (2004) Using historical documents for landslide, debris flow and stream flood prevention. Applications in Northern Italy. Nat Haz 31:663–679. CrossRefGoogle Scholar
  75. UNISDR (1994) Yokohama strategy and plan of action for a safer world. United Nations, YokohamaGoogle Scholar
  76. UNISDR (2007) Hyogo framework for action 2005–2015: building the resilience of nations and communities to disasters. United Nations, GenevaGoogle Scholar
  77. UNISDR (2015) Sendai framework for disaster risk reduction 2015–2030. United Nations, GenevaGoogle Scholar
  78. Urban O (1982) Czech Society 1848–1918 (in Czech). Svoboda, PrahaGoogle Scholar
  79. Vilímek V, Klimeš J, Torres MZ (2016) Reassessment of the development and hazard of the Rampac Grande landslide, Cordillera Negra, Peru. Geoenviron Disastres 3:1–7. CrossRefGoogle Scholar
  80. Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9:5 [online] URL: CrossRefGoogle Scholar
  81. Walshe R, Argumedo A (2016) Ayni, Ayllu, Yanantin and Chanincha: the cultural values enabling adaptation to climate change in communities of the Potato Park, in the Peruvian Andes. GAIA 25(3):166–173. CrossRefGoogle Scholar
  82. Whatmore S (2009) Mapping knowledge controversies: science democracy and the redistribution of expertise. Prog Hum Geogr 33:587–598. CrossRefGoogle Scholar
  83. Willis I, Fitton J (2016) A review of multivariate social vulnerability methodologies: a case study of the River Parrett catchment, UK. Nat Haz Earth Syst Sci 16:1387–1399. CrossRefGoogle Scholar
  84. Wilson G (2012) Community resilience and environmental transitions. Routledge, LondonGoogle Scholar
  85. Wisner B, Blaikie P, Cannon T, Davis I (2014) At risk: natural hazards, people’s vulnerability and disasters. Routledge, LondonGoogle Scholar

List of historical sources (in original languages). Accessed 20 Oct 2018

  1. S1 Untersuchung des bey Wessel, und Reindlitz Unweit Aussig zum Anfange Gegenwärtigen Jahrs 1770 Sich Ereigneten Heftigen Erdbebens Sammt der Entscheidung der Wahrscheinlichsten Ursache Desselben 1770 (F. Zeno), PragGoogle Scholar
  2. S2 Ohngefehrer Entwurf 1770 (J. I. Zechel). Fond Velkostatek Krásné Březno - Všebořice 1568–1945, inv. č. 1344, SoA Litoměřice, branch Děčín – PodmoklyGoogle Scholar
  3. S3 Plan der Gegend nahe Aussig, heute Ústí nad Labem, Federzeichnung, ca. 1 : 33 000 (G. A. Günther). Deutsche Fotothek, signature SLUB/KS A9960Google Scholar
  4. S4 Aussiger Anzeiger newspapers (1856–1902). Sbírka novin, Archiv města Ústí nad LabemGoogle Scholar
  5. S5 Postcard “Klapé od 8-10 dub 1898” and “Darujte 5kr. katastrofou postiženým v Klapém”, private collectionsGoogle Scholar
  6. S6 Situationsplan zur Hebung der Strasse bei Waltirsche (1906). Fond Okresní úřad 1850–1938, inv. č. 261, Archiv města Ústí nad LabemGoogle Scholar
  7. S7 Projekt für die Stabilisierung der Rutschung der Bezirksstrasse Waltirsche-Schwaden (1920). Fond Okresní úřad 1850–1938, inv. č. 261, Archiv města Ústí nad LabemGoogle Scholar
  8. S8 Sanace sesuvu okresní silnice Valtířov-Svádov, Ředitelství státních drah Praha 1927. Fond Okresní úřad 1850–1938, inv. č. 261, Archiv města Ústí nad Labem. (note: the document is a reply from 1927 to earlier request by local authorities made in 1925)Google Scholar
  9. S9 Waldschnitz, Ge. Waltirsche, Erdrutschung. Technisches Bureau des Landeskulturrates für Böhmen – Auẞenstelle Teplitz-Schönau. Fond Okresní úřad 1850–1938, inv. č. 261, Archiv města Ústí nad LabemGoogle Scholar
  10. S10 Rutschung beim Wohnhaus C. No. 6 in Waltirsche, Bezirksverwaltungskommission Aussig 1928. Fond Okresní úřad 1850–1938, inv. č. 261, Archiv města Ústí nad LabemGoogle Scholar
  11. S11 Zpráva o sesouvaném území v okolí kravína ČSSS Kadaň, farma Poláky 1958, Agroprojekt, n.p. Praha, závod Karlovy Vary, Archive of the Czech Geological survey (Geofond) P010463Google Scholar
  12. S12 Dokumentace sesuvů v katastrálním území Poláky, Dotalík 2015, Czech Geological Survey, ČGS-441/15/0638*SOG-441/224/2015Google Scholar
  13. S13 Rudé právo newspapers. Online archive of Czech periodicals, Institute for Czech literature, Czech Academy of Sciences, [online]
  14. S14 Assessment report on 2013 flood, Czech Hydrometeorological Institute, Prague 2013, [online]
  15. S15 Ústecký deník newspapers 2014, [online]

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science, Department of GeographyJ. E. Purkyně University in Ústí nad LabemÚstí nad LabemCzech Republic

Personalised recommendations