Advertisement

Landslides

, Volume 16, Issue 1, pp 37–53 | Cite as

On the effects of landslide deformability and initial submergence on landslide-generated waves

  • S. Yavari-RamsheEmail author
  • B. Ataie-Ashtiani
Original Paper
  • 109 Downloads

Abstract

This paper represents a numerical study on the effects of landslide initial submergence and its geotechnical and rheological properties on the characteristics of landslide-generated waves (LGWs) and landslide deformation. A number of 117 numerical experiments are performed using a two-layer Coulomb Mixture Flow (2LCMFlow) model on a real-sized numerical flume as a simplified cross section of the Maku dam reservoir, located in the Northwest of Iran. Three different initial locations are considered for landslide representing a subaerial (SAL), a semi-submerged (SSL), and a submarine (SML) landslide. Based on the numerical results, the majority of SMLs and in some cases SSLs generate tsunami waves with a larger wave trough than the wave crest. The maximum negative wave amplitudes of LGWs caused by SMLs (SMLGWs) can be up to 55% larger than that for SALs. LGWs caused by SALs (SALGWs) commonly have a higher wave crest than the wave trough. In 70% of cases, the maximum wave crests of SALGWs are larger than that for LGWs caused by SSLs (SSLGWs) and SMLGWs. While, in the rest 30% of simulations, the maximum SSLGW crests are up to 60% larger than SALGWs. Due to the landslide inter-phase interactions in combination with its basal and internal friction resistances, only 10–40% of the SAL initial mass contributes in LGW generation process. Energy transfer from landslide into water is about 0.5–7.5% for SMLs, 6–17.2% for SSLs, and 5–15% for SALs. The final deposit of SMLs generally has a short and thick profile while SALs and SSLs elongate more and travel longer distances. Finally, a Coulomb mixture product parameter, PCM, is defined to relate the maximum LGW heights to the considered landslide properties.

Keywords

Landslide-generated wave Tsunami Dam reservoir Numerical simulation Coulomb mixture Energy transfer 

Nomenclature

A

Jacobean matrix

As

Landslide volume per unit width

an

Negative wave amplitude

ap

Positive wave amplitude

B

Coupling term matrix

b

Bottom level

C

Characteristic wave velocity

D

Diagonal matrix of eigenvalues

ET

Energy conversion ratio

E

Total energy

F

Numerical flux matrix

Fr

Slide Froude number

df

Generalized numerical flux

G

General function

g

Gravitational acceleration

H

Wave height

h

Depth

h0

Still water depth

h1

Water layer depth

h2

Landslide thickness

hmax

Maximum thickness of landslide deposit

hs

Front thickness of landslide at impact

i

i-th grid cell

K

Earth pressure coefficient

KE

Kinetic energy

κ

Matrix of local eigenvectors

Ls

Landslide initial length

ls

Horizontal length of landslide deposit

M

Relative slide mass

Mw

Moment magnitude of earthquake

m

Mass

n

Number of time steps

P

Pressure

P1

Roe correction term

P2

Corrected part of the projection matrixes

PCM

Coulomb mixture product parameter

PI

Impulse product parameter

Pzz

Normal pressure

PE

Potential energy

q

Flow discharge (hu)

R2

Coefficient of determination

r

Relative density ρ2/ρ1

rC

Δtx

S

Source term matrix

Sr

Relative slide thickness

T

Coulomb friction matrix

TS

Landslide initial thickness

t

Time

u

Averaged velocity in x direction

us

Landslide impact velocity

s

Landslide thickness at impact

VS

Landslide volume

ν

Velocity

W

Vector of unknowns

w

Water body width

X

Total length of computational domain

x

Cartesian coordinate horizontal component

x0

Horizontal coordinate of runup surface

xave

Averaged location of landslide deposit

xfront

Front location of landslide deposit

xrear

Rear location of landslide deposit

z

Cartesian coordinate vertical component

Z0

Landslide initial submergence depth

δ

Basal friction angle

δ0

Angle of repose

δmod

Modified δ

ψ0

Landslide porosity

η

Water surface fluctuations

θ

Slope angle

Λ1

Parameter (λ1 + K(1 − λ1))

Λ2

Parameter (2 + K(1 − 2))

λ

Empirical parameter

λ1

Constitutive coefficient

λ2

Constitutive coefficient

ρ1

Water density

ρ2

Landslide bulk density

ρs

Landslide solid grain density

σc

Basal critical stress

ϕ

Internal friction angle

Coulomb friction term

τcrit

Basal critical friction

∆t

Time step

∆x

Grid size in x direction

Γl

Local eigenvalues

f

Landslide fluid phase

s

Landslide solid phase

\( \overline{} \)

Roe intermediate state

Predicted value of a parameter

s

Landslide property

w

Wave property

Abbreviations

2LCMFlow

Two-layer Coulomb mixture flow model

2D

Two-dimensional

3D

Three-dimensional

EGT

Earthquake-generated tsunami

LGW

Landslide-generated wave

SAL

Subaerial landslide

SALGW

Subaerial landslide-generated wave

SML

Submarine landslide

SMLGW

Submarine landslide-generated wave

SSL

Semi-submerged landslide

SSLGW

Semi-submerged landslide-generated wave

Notes

Acknowledgements

The authors would like to thank the Civil Engineering Department of the Sharif University of Technology for their support during the completion of this research. The authors are also grateful for the constructive comments of the editor and two anonymous reviewers, which helped improving the final manuscript.

References

  1. Abadie S, Harris J, Grilli S, Fabre R (2012) Numerical modeling of tsunami waves generated by the flank collapse of the cumbre volcano (La Palma, Canary Islands): tsunami source and near field effects. J Geophys Res 117(C05030). doi: https://doi.org/10.1029/2011JC007646
  2. Andersland OB, Ladanyi B (2004) Frozen ground engineering. John Wiley & Sons Inc, 2 edition, 363 ppGoogle Scholar
  3. Ataie-Ashtiani B, Malek-Mohammadi S (2007) Near field amplitude of sub-aerial landslide generated waves in dam reservoirs. Dam Eng XVII(4):197–222Google Scholar
  4. Ataie-Ashtiani B, Najafi-Jilani A (2007) A higher-order Boussinesq-type model with moving bottom boundary: applications to submarine landslide tsunami waves. Int J Numer Meth Fluid 53(6):1019–1048.  https://doi.org/10.1002/fld.1354 CrossRefGoogle Scholar
  5. Ataie-Ashtiani B, Najafi-Jilani A (2008) Laboratory investigations on impulsive waves caused by underwater landslide. Coast Eng 55(12):989–1004.  https://doi.org/10.1016/j.coastaleng.2008.03.003 CrossRefGoogle Scholar
  6. Ataie-Ashtiani B, Nik-khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280.  https://doi.org/10.1007/s10652-008-9074-7 CrossRefGoogle Scholar
  7. Ataie-Ashtiani B, Yavari-Ramshe S (2011) Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides 8:417–432.  https://doi.org/10.1007/s10346-011-0258-8 CrossRefGoogle Scholar
  8. Bernard EN (1998) Program aims to reduce impact of tsunamis on Pacific states. Eos Trans AGU 79(22):262–263.  https://doi.org/10.1029/98EO00191 CrossRefGoogle Scholar
  9. Berndt C, Brune S, Nisbet E, Zschau J, Sobolev V (2009) Tsunami modeling of a submarine landslide in the Farm Strait. Geochem Geophys Geosyst 10:Q04009.  https://doi.org/10.1029/2008GC002292 CrossRefGoogle Scholar
  10. Bregoli F, Bateman A, Medina V (2017) Tsunamis generated by fast granular landslides: 3D experiments and empirical predictors. J Hydraulic Res 55(6):743–758.  https://doi.org/10.1080/00221686.2017.1289259 CrossRefGoogle Scholar
  11. Corona N, Ramírez-Herrera MT (2015) Did an underwater landslide trigger the June 22, 1932 tsunami off the Pacific coast of Mexico? Pure Appl Geophys 172(12):3573–3587.  https://doi.org/10.1007/s00024-015-1171-1 CrossRefGoogle Scholar
  12. Di Risio M, De Girolamo P, Beltrami GM (2011) Forecasting Landslide Generated Tsunamis: a Review. Morner NA (ed.), The Tsunami Threat - Research and Technology, Chapter 6:81-106, IntechOpen.  https://doi.org/10.5772/13767
  13. Fernández-Nieto ED, Bouchut F, Bresch B, Castro Díaz MJ, Mangeney A (2008) A new savage–Hutter type model for submarine avalanches and generated tsunami. J Comput Phys 227:7720–7754.  https://doi.org/10.1016/j.jcp.2008.04.039 CrossRefGoogle Scholar
  14. Fine IV, Rabinovich AB, Thomson RE, Kulikov EA (2003) Numerical modeling of tsunami generation by submarine and subaerial landslides. In: Yalciner AC, Pelinovsky EN, Okal E, Synolakis CE (eds) Submarine landslides and tsunamis. NATO science series (series IV: earth and environmental sciences), Vol 21. Springer, Dordrecht, pp 69–88.  https://doi.org/10.1007/978-94-010-0205-9_9 CrossRefGoogle Scholar
  15. Fritz HM, Hager WH, Minor HE (2001) Lituya Bay case: rockslide impact and wave run-up. Sci Tsunami Hazards, Int J Tsunami Society 19(1):3–22Google Scholar
  16. Fritz HM, Hager WH, Minor HE (2004) Near field characteristics of landslide generated impulse waves. J Waterway Port Coastal Ocean Eng 130(6):287–302.  https://doi.org/10.1061/(ASCE)0733-950X(2004)130:6(287) CrossRefGoogle Scholar
  17. Geersen J, Voelker D, Behrmann JH, Reichert C, Krastel S (2011) Pleistocene giant slope failures offshore Arauco peninsula, southern Chile. J Geol Soc Lond 168:1–12.  https://doi.org/10.1144/0016-76492011-027 CrossRefGoogle Scholar
  18. Geist EL (2000) Origin of the 17 July, 1998 Papua New Guinea tsunami: earthquake or landslide. Seismol Res Lett 71:344–351.  https://doi.org/10.1785/gssrl.71.3.344 CrossRefGoogle Scholar
  19. Gisler GR (2008) Tsunami simulations. Annu Rev Fluid Mech 40:71–90.  https://doi.org/10.1146/annurev.fluid.40.111406.102208 CrossRefGoogle Scholar
  20. Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body, applications to underwater landslides. Eng Analysis Boundary Elemt 23:645–656.  https://doi.org/10.1016/S0955-7997(99)00021-1 CrossRefGoogle Scholar
  21. Grilli ST, Shelby M, Kimmoun O, Dupont G, Nicolsky D, Ma G, Kirby JT, Shi F (2016) Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast. Nat Hazards 86(1):353–391.  https://doi.org/10.1007/s11069-016-2692-3 CrossRefGoogle Scholar
  22. Harbitz CB, Lovhølt F, Bungum H (2014) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72:1341–1374.  https://doi.org/10.1007/s11069-013-0681-3 CrossRefGoogle Scholar
  23. Heinrich P, Piatanesi A, Hébert H (2001) Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event. Geophys J Int 145:97–111.  https://doi.org/10.1111/j.1365-246X.2001.00336.x CrossRefGoogle Scholar
  24. Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port C-ASCE 136(3):145155–145155.  https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037 CrossRefGoogle Scholar
  25. Heller V, Spinneken J (2015) On the effect of the water body geometry on landslide–tsunamis: physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast Eng 104:113–134.  https://doi.org/10.1016/j.coastaleng.2015.06.006 CrossRefGoogle Scholar
  26. Heller V, Bruggemann M, Spinneken J, Rogers BD (2016) Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coast Eng 109:20–41.  https://doi.org/10.1016/j.coastaleng.2015.12.004 CrossRefGoogle Scholar
  27. Hornbach MJ, Braudy N, Briggs RW, Cormier MH, Davis MB, Diebold JB, Dieudonne N, Douilly R, Frohlich C, Gulick SPS, Johnson III HE, Mann P, McHugh C, Ryan-Mishkin K, Prentice CS, Seeber L, Sorlien CC, Steckler MS, Symithe SJ, Taylor FW, Templeton J (2010) High tsunami frequency as a result of combined strike-slip faulting and coastal landslides. Nat Geosci 3(11):783–788.  https://doi.org/10.1038/NGEO975 CrossRefGoogle Scholar
  28. Huber A (1980) Schwallwellen in Seen als Folge von Bergstürzen. VAW-Mitteilung 47, Vischer D (ed.), Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Switzerland (in German).  https://doi.org/10.3929/ethz-a-000207623
  29. Hungr O (2008) Simplified models of spreading flow of dry granular material. Can Geotech J 45:1156–1168.  https://doi.org/10.1139/T08-059 CrossRefGoogle Scholar
  30. Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J Geophys Res 106(B1):537–552.  https://doi.org/10.1029/2000JB900329 CrossRefGoogle Scholar
  31. Kafle J, Pokhrel PR, Khattri KB, Kattel P, Tuladhar BM, Pudasaini SP (2016) Landslide-generated tsunami and particle transport in mountain lakes and reservoirs. Ann Glaciol 57:232–244.  https://doi.org/10.3189/2016AoG71A034 CrossRefGoogle Scholar
  32. Kamphuis JW, Bowering RJ (1970) Impulse waves generated by landslides. Proc 12th Coastal Eng Conf, vol 1. ASCE, NY, pp 575–588.  https://doi.org/10.9753/icce.v12.%25p
  33. Koloski JW, Schwarz SD, Tubbs DW (1989) Geotechnical properties of geologic materials. Washington Division of Geology and Earth Resources Bulletin 78:19–26Google Scholar
  34. Korup O, Clague JJ (2009) Natural hazards, extreme events, and mountain topography. Quat Sci Rev 28(11–12):977–990.  https://doi.org/10.1016/j.quascirev.20.09.02.021 CrossRefGoogle Scholar
  35. Lax PD, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13(2):217–237.  https://doi.org/10.1002/cpa.3160130205 CrossRefGoogle Scholar
  36. Lindstrøm EK (2016) Waves generated by subaerial slides with various porosities. Coast Eng 116:170–179.  https://doi.org/10.1016/j.coastaleng.2016.07.001 CrossRefGoogle Scholar
  37. López-Venegas AM, Horrillo J, Pampell-Manis A, Huérfano V, Mercado A (2014) Advanced tsunami numerical simulations and energy considerations by use of 3D–2D coupled models: the October 11, 1918, Mona passage tsunami. Pure Appl Geophys 172(6):1679–1698.  https://doi.org/10.1007/s00024-014-0988-3 CrossRefGoogle Scholar
  38. Løvholt F, Bondevik S, Laberg JS, Kim J, Boylan N (2017) Some giant submarine landslides do not produce large tsunamis. Geophys Res Lett 44:8463–8472.  https://doi.org/10.1002/2017GL074062 CrossRefGoogle Scholar
  39. Lynett P, Liu PLF (2002) A numerical study of submarine landslide generated waves and runup. Proc R Soc Lond A 458:2885–2910.  https://doi.org/10.1098/rspa.2002.0973 CrossRefGoogle Scholar
  40. Ma G, Kirby JT, Hsu TJ, Shi F (2015) A two-layer landslide model for tsunami wave generation: theory and computation. Ocean Model 93:40–55.  https://doi.org/10.1016/j.ocemod.2015.07.012 CrossRefGoogle Scholar
  41. Mahab Ghods Inc (1999) Final report of the Maku dam reservoir project. (in Persian)Google Scholar
  42. Martínez ML, Intralawan A, Vázquez G, Pérez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world: ecological, economic and social importance. Ecol Econ 63:254–272.  https://doi.org/10.1016/j.ecolecon.2006.10.022 CrossRefGoogle Scholar
  43. McFall BC, Fritz HM (2016) Physical modelling of tsunamis generated by three-dimentional deformable granular landslides on planar and conical island slopes. Proc R Soc A 427:20160052.  https://doi.org/10.1098/rspa.2016.0052 CrossRefGoogle Scholar
  44. McMurtry GM, Watts P, Fryer GJ, Smith JR, Imamura F (2004) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian islands. Mar Geol 203:219–233.  https://doi.org/10.1016/S0025-3227(03)00306-2 CrossRefGoogle Scholar
  45. Meng Z (2018) Experimental study on impulse waves generated by a viscoplastic material at laboratory scale. Landslides 15:1173–1182.  https://doi.org/10.1007/s10346-017-0939-z CrossRefGoogle Scholar
  46. Miller DJ (1960) Giant waves in Lituya Bay Alaska. USGS Professional Paper 354C:51–86Google Scholar
  47. Mohammed F, Fritz HM (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res 117:C11015.  https://doi.org/10.1029/2011JC007850 CrossRefGoogle Scholar
  48. Pope EL, Talling PJ, Urlaub M, Hunt JE, Clare MA, Challenor P (2015) Are large submarine landslides temporally random or do uncertainties in available age constraints make it impossible to tell? Mar Geol 369:19–33.  https://doi.org/10.1016/j.margeo.2015.07.002 CrossRefGoogle Scholar
  49. Pudasaini SP (2014) Dynamics of submarine debris flow and tsunami. Acta Mech 225:2423–2434.  https://doi.org/10.1007/s00707-014-1126-0 CrossRefGoogle Scholar
  50. Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer-Verlag, BerlinGoogle Scholar
  51. Raichlen F, Lee JJ, Petroff C, Watts P (1996) The generation of waves by a landslide: Skagway, Alaska: a case study. Proc 25th Coastal Eng Conf, ASCE, Orlando, Florida, pp 1478–1490.  https://doi.org/10.9753/ice.v25.%25p
  52. Ruff LJ (2003) Some aspects of energy balance and tsunami generation by earthquakes and landslides. Pure Appl Geophys 160:2155–2176.  https://doi.org/10.1007/s00024-003-2424-y CrossRefGoogle Scholar
  53. Sassa K, He B, Miyagi T, Strasser M, Konagai K, Ostric M, Setiawan H, Takara K, Nagai O, Yamashiki Y, Tutumi S (2012) A hypothesis of the Senoumi submarine megaslide in Suruga bay in Japan-based on the undrained dynamic-loading ring-shear tests and computer simulation. Landslides 9(4):439–455.  https://doi.org/10.1007/s10346-012-0356-2 CrossRefGoogle Scholar
  54. Schaub Y, Haeberli W, Huggel C, Künzler M, Bründl M (2013) Landslides and new lakes in deglaciating areas: a risk management framework. In Margottini C, Canuti P, Sassa K (Eds.), Landslide science and practice 7:31-38.  https://doi.org/10.1007/978-3-642-31313-4_5
  55. Singh VP (1996) Dam break modelling technology. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  56. Small C, Gornitz V, Cohen JE (2000) Coastal hazards and the global distribution of population. Environ Geosci 7(1):3–12.  https://doi.org/10.1046/j.1526-0984.2000.71005 CrossRefGoogle Scholar
  57. Sue LP, Nokes RI, Davidson MJ (2011) Tsunami generation by submarine landslides: comparison of physical and numerical models. Environ Fluid Mech 11:133–165.  https://doi.org/10.1007/s10652-010-9205-9 CrossRefGoogle Scholar
  58. Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Solver EA, Sweet S, Tappin DR (2002) The slump origin of the Papua New Guinea tsunami. R Soc Lond 458(A):763–789.  https://doi.org/10.1098/rspa.2001.0915 CrossRefGoogle Scholar
  59. Tappin DR, Watts P, Grilli ST (2008) The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event. Nat Hazards Earth Syst Sci 8:243–266.  https://doi.org/10.5194/nhess-8-243-2008 CrossRefGoogle Scholar
  60. Tappin DR, Grilli ST, Harris JC, Geller RJ, Masterlark T, Kirby JT, Shi F, Ma G, Thingbaijam KKS, Mai PM (2014) Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar Geol 357:344–361.  https://doi.org/10.1016/j.margeo.2014.09.043 CrossRefGoogle Scholar
  61. ten Brink US, Lee HJ, Geist EL, Twichell (2009) Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Mar Geol 264:65–73.  https://doi.org/10.1016/j.margeo.2008.05.011 CrossRefGoogle Scholar
  62. ten Brink US, Chaytor JD, Geist EL, Brothers DS, Andrews BD (2014) Assessment of tsunami hazard to the U.S. Atlantic margin. Mar Geol 353:31–54.  https://doi.org/10.1016/j.margeo.2014.02.011 CrossRefGoogle Scholar
  63. Tralli DM, Blom RG, Zlotnicki V, Donnellan A, Evans DL (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J Photogramm Remote Sens 59:185–198.  https://doi.org/10.1016/j.isprsjprs.2005.02.002 CrossRefGoogle Scholar
  64. Watts P (2000) Tsunami features of solid block underwater landslides. J Waterw Port Coast Ocean Eng 126(3):144–152.  https://doi.org/10.1061/(ASCE)0733-950X(2000)126:3(144) CrossRefGoogle Scholar
  65. Yavari-Ramshe S, Ataie-Ashtiani B (2009) Simulation of wave generated by landslides in Maku dam reservoir. Prediction and simulation methods for Geohazard mitigation, chapter 14. In: Oka F, Kimoto S, Murakami O (eds) CRC Press. doi: https://doi.org/10.1201/NOE0415804820.ch14
  66. Yavari-Ramshe S, Ataie-Ashtiani B (2016) Numerical simulation of subaerial and submarine landslide generated tsunami waves - recent advances and future challenges. Landslides 13(6):1325–1368.  https://doi.org/10.1007/s10346-016-0734-2 CrossRefGoogle Scholar
  67. Yavari-Ramshe S, Ataie-Ashtiani B (2017a) Subaerial landslide-generated waves: numerical and laboratory simulations. 4 world landslide forum, may 29-June 3, Ljubljana, Slovenia. In: Sassa K, Mikos M, Yin Y (eds) Advancing culture of living with landslides. Springer, Cham, pp 51–73.  https://doi.org/10.1007/978-3-319-59469-9_3 CrossRefGoogle Scholar
  68. Yavari-Ramshe S, Ataie-Ashtiani B (2017b) A rigorous finite volume model to simulate subaerial and submarine landslide generated waves. Landslides 14(1):203–221.  https://doi.org/10.1007/s10346-015-0662-6 CrossRefGoogle Scholar
  69. Yavari-Ramshe S, Ataie-Ashtiani B, Sanders BF (2015) A robust finite volume model to simulate granular flows. Comput Geotech 66:96–112.  https://doi.org/10.1016/j.compgeo.2015.01.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringSharif University of TechnologyTehranIran
  2. 2.National Center for Groundwater Research and Training and School of the EnvironmentFlinders UniversityAdelaideAustralia

Personalised recommendations