, Volume 16, Issue 1, pp 23–35 | Cite as

Impact of seismicity on Nice slope stability—Ligurian Basin, SE France: a geotechnical revisit

  • Alexander RoesnerEmail author
  • Gau­vain Wiemer
  • Stefan Kreiter
  • Stefan Wenau
  • Ting-Wei Wu
  • Françoise Courboulex
  • Volkhard Spiess
  • Achim Kopf
Original Paper


The shallow Nice submarine slope is notorious for the 1979 tsunamigenic landslide that caused eight casualties and severe infrastructural damage. Many previous studies have tackled the question whether earthquake shaking would lead to slope failure and a repetition of the deadly scenario in the region. The answers are controversial. In this study, we assess for the first time the factor of safety using peak ground accelerations (PGAs) from synthetic accelerograms from a simulated offshore Mw 6.3 earthquake at a distance of 25 km from the slope. Based on cone penetration tests (CPTu) and multichannel seismic reflection data, a coarser grained sediment layer was identified. In an innovative geotechnical approach based on uniform cyclic and arbitrary triaxial loading tests, we show that the sandy silt on the Nice submarine slope will fail under certain ground motion conditions. The uniform cyclic triaxial tests indicate that liquefaction failure is likely to occur in Nice slope sediments in the case of a Mw 6.3 earthquake 25 km away. A potential future submarine landslide could have a slide volume (7.7 × 106 m3) similar to the 1979 event. Arbitrary loading tests reveal post-loading pore water pressure rise, which might explain post-earthquake slope failures observed in the field. This study shows that some of the earlier studies offshore Nice may have overestimated the slope stability because they underestimated potential PGAs on the shallow marine slope deposits.


Submarine landslides Liquefaction Earthquakes Post-earthquake slope failure Arbitrary triaxial loading Nice 



We thank our French colleagues from the “Institut français de recherche pour l’exploitation de la mer” for coring during their STEP 2015 oceanographic cruise DOI on the research vessel L’Europe. Additionally, we thank the crew and scientists on board Poseidon cruise POS 500 for the seismic data acquisition. Moreover, we would like to thank Prof. Tobias Mörz for providing triaxial testing cells. Matthias Lange is thanked in memoriam for outstanding technical assistance with the DTTD. David Völker is thanked for fruitful discussions while working on this manuscript. We would like to thank Schlumberger and IHS for providing academic licenses for Vista Seismic Processing Software and Kingdom respectively.

Funding information

This work was supported by the “Deutsche Forschungsgemeinschaft” via MARUM Research Center (Grants FZT15 and EXC309) in the area Seafloor Dynamics.


  1. Agrawal YC, McCave IN, Riley JB (1991) Laser diffraction size analysis. In: Syvitski JPM (ed) Principles, methods, and application of particle size analysis. Cambridge University Press, Cambridge, pp 119–128CrossRefGoogle Scholar
  2. Ai F, Förster A, Stegmann S, Kopf A (2014) Geotechnical characteristics and slope stability analysis on the deeper slope of the Ligurian margin, southern France. In: Sassa K (ed) Landslide science for a safer geoenvironment. Springer, Cham, pp 549–555CrossRefGoogle Scholar
  3. Anthony EJ (2007) Problems of hazard perception on the steep, urbanised Var coastal floodplain and delta, French Riviera. Méditerranée:91–97.
  4. Anthony EJ, Julian M (1997) The 1979 Var delta landslide on the French Riviera: a retrospective analysis. J Coast Res 13:27–35Google Scholar
  5. Assier-Rzadkieaicz S, Heinrich P, Sabatier PC, Savoye B, Bourillet JF (2000) Numerical modelling of a landslide-generated tsunami: the 1979 Nice event. Pure Appl Geophys 157:1707–1727. CrossRefGoogle Scholar
  6. ASTM Standard D5311/D5311M − 13 (2013) Test method for load controlled cyclic triaxial strength of soilGoogle Scholar
  7. Auffret GA, Auzende JM, Gennesseaux M, Monti S, Pastouret L, Pautot G, Vanney JR (1982) Recent mass wasting processes on the Provencal margin (western Mediterranean). In: Saxov S, Nieuwenhuis JK (eds) Marine slides and other mass movements. Springer, Boston, pp 53–58CrossRefGoogle Scholar
  8. Boulanger RW, Idriss IM (2006) Liquefaction susceptibility criteria for silts and clays. J Geotech Geoenviron 132:1413–1426.
  9. Bradshaw AS, Baxter CDP (2007) Sample preparation of silts for liquefaction testing. Geotech Test J 30:324–332. Google Scholar
  10. Bray JD, Sancio RB (2006) Assessment of the liquefaction susceptibility of fine-grained soils. J Geotech Geoenviron 132:1165–1177.
  11. BS 1377–2:1990 (1990) Methods of test for soils for civil engineering purposes - part 2: classification tests. British Standard Institution, LondonGoogle Scholar
  12. BS 5930:1999+A2:2010 (1999) Code of practice for site investigations. British Standard Institution, LondonGoogle Scholar
  13. Castro G (1969) Liquefaction of sands: Dissertation. Havard Soil Mechanics Series, vol 87. Harvard University, Cambridge, MassachusettsGoogle Scholar
  14. Cavalié O, Sladen A, Kelner M (2015) Detailed quantification of delta subsidence, compaction and interaction with man-made structures: the case of the NCA airport, France. Nat Hazards Earth Syst Sci 15:1973–1984. CrossRefGoogle Scholar
  15. Cetin OK, Seed RB (2004) Nonlinear shear mass participation factor (rd) for cyclic shear stress ratio evaluation. Soil Dyn Earthq Eng 24:103–113. CrossRefGoogle Scholar
  16. Cochonat P, Bourillet JF, Savoye B, Dodd L (1993) Geotechnical characteristics and instability of submarine slope sediments, the Nice slope (N-W Mediterranean Sea). Mar Georesour Geotechnol 11:131–151. CrossRefGoogle Scholar
  17. Courboulex F, Larroque C, Deschamps A, Kohrs-Sansorny C, Gélis C, Got JL, Charreau J, Stéphan JF, Béthoux N, Virieux J, Brunel D, Maron C, Duval AM, Perez J-L, Mondielli P (2007) Seismic hazard on the French Riviera: observations, interpretations and simulations. Geophys J Int 170:387–400. CrossRefGoogle Scholar
  18. Dan G (2007) Processus gravitaires et evaluation de la stabilite des pentes: Approches geologiques et geotechnique: Dissertation. University Bretagne occidentale, BrestGoogle Scholar
  19. Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64. CrossRefGoogle Scholar
  20. DIN 18137-3 (2002) Baugrund, Untersuchung von Bodenproben - Bestimmung der Scherfestigkeit - Teil. Direkter Scherversuch. Deutsches Institut für Normung, Berlin, p 3Google Scholar
  21. Dubar M, Anthony EJ (1995) Holocene environmental change and river-mouth sedimentation in the Baie des Anges, French Riviera. Quat Res 43:329–343. CrossRefGoogle Scholar
  22. El Shamy U, Abdelhamid Y (2017) Some aspects of the impact of multidirectional shaking on liquefaction of level and sloping granular deposits. J Eng Mech 143:C4016003–1–C4016003–17. CrossRefGoogle Scholar
  23. Ferrari G (1991) The 1887 Ligurian earthquake: a detailed study from contemporary scientific observations. Tectonophysics 193:131–139. CrossRefGoogle Scholar
  24. Gennesseaux M, Mauffret A, Pautot G (1980) Les glissements sous-marins de la pente continentale niçoise et la rupture de câbles en mer Ligure (Méditerranée occidentale). Comptes Rendus de l'Académie des Sciences de Paris 290(14):959–962Google Scholar
  25. Haque U, Blum P, da Silva PF, Andersen P, Pilz J, Chalov SR, Malet J-P, Auflič MJ, Andres N, Poyiadji E, Lamas PC, Zhang W, Peshevski I, Pétursson HG, Kurt T, Dobrev N, García-Davalillo JC, Halkia M, Ferri S, Gaprindashvili G, Engström J, Keellings D (2016) Fatal landslides in Europe. Landslides 13:1545–1554. CrossRefGoogle Scholar
  26. Harbitz CB, Løvholt F, Pedersen G, Masson DG (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Nor J Geol 86:255–264Google Scholar
  27. Holzer TL, Hanks TC, Youd TL (1989) Dynamics of liquefaction during the 1987 Superstition Hills, California, earthquake. Science 244:56–59. CrossRefGoogle Scholar
  28. Honoré L, Courboulex F, Souriau A (2011) Ground motion simulations of a major historical earthquake (1660) in the French Pyrenees using recent moderate size earthquakes. Geophys J Int 187:1001–1018. CrossRefGoogle Scholar
  29. Huang Y, Zheng H, Zhuang Z (2012) Seismic liquefaction analysis of a reservoir dam foundation in the south–north water diversion project in China. Part I: liquefaction potential assessment. Nat Hazards 60:1299–1311. CrossRefGoogle Scholar
  30. Hühnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362. CrossRefGoogle Scholar
  31. Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes. Engineering monographs on miscellaneous earthquake engineering topics, MNO-12. Earthquake Engineering Research Institute, BerkeleyGoogle Scholar
  32. Ishihara K (1984) Post-earthquake failure of a tailings dam due to liquefaction of pond deposit. International Conference on Case Histories in Geotechnical Engineering Google Scholar
  33. Ishihara K (1985) Stability of natural deposits during earthquakes: 11th Internatinal conference on soil mechanics and foundation engineering. Proceedings, San Francisco, pp 321–376Google Scholar
  34. Jibson RW, Prentice CS, Borissoff BA, Rogozhin EA, Langer CJ (1994) Some observations of landslides triggered by the 29 April 1991 Racha earthquake, republic of Georgia. Bull Seismol Soc Am 84:963–973Google Scholar
  35. Kelner M, Migeon S, Tric E, Couboulex F, Dano A, Lebourg T, Taboada A (2016) Frequency and triggering of small-scale submarine landslides on decadal timescales: analysis of 4D bathymetric data from the continental slope offshore Nice (France). Mar Geol 379:281–297. CrossRefGoogle Scholar
  36. Kodikara J, Seneviratne HN, Wijayakulasooryia CV (2006) Discussion of “using a small ring and a fall-cone to determine the plastic limit” by Tao-Wei Feng. J Geotech Geoenviron 132:276–278.
  37. Kohrs-Sansorny C, Courboulex F, Bour M, Deschamps A (2005) A two-stage method for ground-motion simulation using stochastic summation of small earthquakes. Bull Seismol Soc Am 95:1387–1400. CrossRefGoogle Scholar
  38. Kopf A, Cruise participants (2008) report and preliminary results of METEOR cruise M73/1: LIMA-LAMO (Ligurian margin landslide measurement & obersveratory), Cadiz 22.07.2007 – Genoa 11.08.2007. Berichte aus dem Fachbereich Geowissenschaften der Universität BremenGoogle Scholar
  39. Kopf A, Cruise Participants (2016) Report and preliminary results of R/V POSEIDON cruise POS 500, LISA, Ligurian slope AUV mapping, gravity coring and seismic reflection, Catania (Italy) – Malaga (Spain), 25.05.2016–09.06.2016. Berichte aus dem Fachbereich Geowissenschaften der Universität BremenGoogle Scholar
  40. Kopf A, Stegmann S, Garziglia S, Henry P, Dennielou B, Haas S, Weber K-C (2016) Soft sediment deformation in the shallow submarine slope off Nice (France) as a result of a variably charged Pliocene aquifer and mass wasting processes. Sediment Geol 344:290–309. CrossRefGoogle Scholar
  41. Kramer SL (1996) Geotechnical earthquake engineering. Prentice-hall international series in civil engineering and engineering mechanics. Prentice Hall, Upper Saddle River, N.JGoogle Scholar
  42. Kreiter S, Moerz T, Strasser M, Lange M, Schunn W, Schlue BF, Otto D, Kopf A (2010) Advanced dynamic soil testing — introducing the new Marum dynamic triaxial testing device. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences: 4th international symposium. Springer, Dordrecht, pp 31–41Google Scholar
  43. Labbé M, Donnadieu C, Daubord C, Hébert H (2012) Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): comparison with coastal data. J Geophys Res 117:1–17. CrossRefGoogle Scholar
  44. Larroque C, Delouis B, Godel B, Nocquet J-M (2009) Active deformation at the southwestern Alps–Ligurian basin junction (France–Italy boundary): evidence for recent change from compression to extension in the Argentera massif. Tectonophysics 467:22–34. CrossRefGoogle Scholar
  45. Larroque C, Lépinay d, Mercier B, Migeon S (2011) Morphotectonic and fault–earthquake relationships along the northern Ligurian margin (western Mediterranean) based on high resolution, multibeam bathymetry and multichannel seismic-reflection profiles. Mar Geophys Res 32:163–179. CrossRefGoogle Scholar
  46. Larroque C, Scotti O, Ioualalen M (2012) Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling. Geophys J Int 190:87–104. CrossRefGoogle Scholar
  47. Leynaud D, Mulder T, Hanquiez V, Gonthier E, Régert A (2017) Sediment failure types, preconditions and triggering factors in the Gulf of Cadiz. Landslides 14:233–248. CrossRefGoogle Scholar
  48. Liu AH, Stewart JP, Abrahamson NA, Moriwaki Y (2001) Equivalent number of uniform stress cycles for soil liquefaction analysis. J Geotech Geoenviron 127:1017–1026.
  49. Loizeau J-L, Arbouille D, Santiago S, Vernet J-P (1994) Evaluation of a wide range laser diffraction grain size analyser for use with sediments. Sedimentology 41:353–361. CrossRefGoogle Scholar
  50. Migeon S, Mulder T, Savoye B, Sage F (2006) The Var turbidite system (Ligurian Sea, northwestern Mediterranean)—morphology, sediment supply, construction of turbidite levee and sediment waves: implications for hydrocarbon reservoirs. Geo-Mar Lett 26:361–371. CrossRefGoogle Scholar
  51. Migeon S, Cattaneo A, Hassoun V, Dano A, Casedevant A, Ruellan E (2012) Failure processes and gravity-flow transformation revealed by high-resolution AUV swath bathymetry on the Nice continental slope (Ligurian Sea). In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences: 5th international symposium. Springer, Dordrecht, pp 451–461CrossRefGoogle Scholar
  52. Mulder T, Savoye B, Piper DJW, Syvitski JPM (1998) The Var submarine sedimentary system: understanding Holocene sediment delivery processes and their importance to the geological record. Geol Soc Lond, Spec Publ 129:145–166. CrossRefGoogle Scholar
  53. Mulilis JP, Arulanandan K, Mitchell JK, Chan CK, Seed HB (1977) Effects of sample preparation on sand liquefaction. J Geotech Eng Div 103:91–108Google Scholar
  54. Nocquet J-M (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579:220–242. CrossRefGoogle Scholar
  55. Rehault J-P, Boillot G, Mauffret A (1984) The western Mediterranean basin geological evolution. Mar Geol 55:447–477. CrossRefGoogle Scholar
  56. Sadrekarimi A, Olson SM (2011) Critical state friction angle of sands. Géotechnique 61:771–783. CrossRefGoogle Scholar
  57. Sahal A, Lemahieu A (2011) The 1979 Nice airport tsunami: mapping of the flood in Antibes. Nat Hazards 56:833–840. CrossRefGoogle Scholar
  58. Salichon J, Kohrs-Sansorny C, Bertrand E, Courboulex F (2010) A mw 6.3 earthquake scenario in the city of Nice (Southeast France): ground motion simulations. J Seismol 14:523–541. CrossRefGoogle Scholar
  59. Savoye B, Piper DJW (1991) The Messinian event on the margin of the Mediterranean Sea in the Nice area, southern France. Mar Geol 97:279–304. CrossRefGoogle Scholar
  60. Savoye B, Piper DJW, Droz L (1993) Plio-Pleistocene evolution of the Var deep-sea fan off the French Riviera. Mar Pet Geol 10:550–560. CrossRefGoogle Scholar
  61. Seed BH, Idriss I (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97:1249–1273Google Scholar
  62. Seed BH, Pyke RM, Martin GR (1978) Effect of multidirectional shaking on pore pressure development in sands. J Geotech Eng Div 104:27–44Google Scholar
  63. Semblat J-F, Duval A-M, Dangla P (2000) Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments. Soil Dyn Earthq Eng 19:347–362. CrossRefGoogle Scholar
  64. Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Res 24:151–158. CrossRefGoogle Scholar
  65. Skempton AW (1954) The pore-pressure coefficients a and B. Géotechnique 4:143–147. CrossRefGoogle Scholar
  66. Stegmann S, Kopf A (2014) How stable is the Nice slope? - an analysis based on strength and cohesion from ring shear experiments. In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz CB (eds) Submarine mass movements and their consequences: 6th international symposium. Springer, Cham, pp 189–199CrossRefGoogle Scholar
  67. Stegmann S, Sultan N, Kopf A, Apprioual R, Pelleau P (2011) Hydrogeology and its effect on slope stability along the coastal aquifer of Nice, France. Mar Geol 280:168–181. CrossRefGoogle Scholar
  68. Steiner A, Kopf A, Henry P, Stegmann S, Apprioual R, Pelleau P (2015) Cone penetration testing to assess slope stability in the 1979 Nice landslide area (Ligurian margin, SE France). Mar Geol 369:162–181. CrossRefGoogle Scholar
  69. Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Trincardi F, Urgeles R, Vorren TO, Wilson C (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213:291–321. CrossRefGoogle Scholar
  70. Sultan N, Savoye B, Jouet G, Leynaud D, Cochonat P, Henry P, Stegmann S, Kopf A (2010) Investigation of a possible submarine landslide at the Var delta front (Nice continental slope, Southeast France). Can Geotech J 47:486–496. CrossRefGoogle Scholar
  71. Thomas Y, Apprioual R (2015) STEP 2015 cruise, L'Europe R/V. doi:
  72. Wang H, Wen R, Ren Y (2017) Simulating ground-motion directivity using stochastic empirical Green’s function method. Bull Seismol Soc Am 107:359–371. CrossRefGoogle Scholar
  73. Wiemer G, Kopf A (2017) On the role of volcanic ash deposits as preferential submarine slope failure planes. Landslides 14:223–232. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MARUM – Center for Marine Environmental SciencesUniversity of BremenBremenGermany
  2. 2.Faculty of GeosciencesUniversity of BremenBremenGermany
  3. 3.Université Côte d’Azur CNRS, IRD, Observatoire de la Côte d’Azur, GéoazurValbonneFrance

Personalised recommendations