Advertisement

Landslides

, Volume 15, Issue 4, pp 823–827 | Cite as

Database of giant landslides on volcanic islands—first results from the Atlantic Ocean

  • Jan Blahut
  • Jan Klimeš
  • Matt Rowberry
  • Michal Kusák
ICL/IPL Activities

Abstract

Giant landslides on volcanic islands represent the largest formations which can be created in a single geological moment. Such landslides are distributed across the globe and have attracted a significant amount of research interest. Yet, no coherent attempts have been made to rationalise this information into a single online resource. This report summarises information about the structure of the recently created database of giant landslides on volcanic islands and presents some observations regarding the uncertainties inherent in the inventories. The database is being prepared over a 3-year period: the first year of the project has focused on rationalising information about giant landslides around the Atlantic Ocean while the second and third years will focus on rationalising information about such landslides from the Pacific Ocean and Indian Ocean, respectively. Using this database, it should be possible to interrogate the spatial and temporal patterns of land sliding and landslide reactivation as well as to better assess the hazard and potential risks posed by giant landslides on volcanic islands. It will be particularly interesting to see if any evidence can be found for global triggers, such as eustatic or climatic changes, instead of the more commonly expounded local triggers. Ultimately, it is hoped that the database will benefit both the geoscientific community and those agencies responsible for civil defence. This work is part of the activities of the International Consortium on Landslides, namely its International Programme on Landslides (Project n. 212). The database is available from the giant landslides project webpage: https://www.irsm.cas.cz/ext/giantlandslides.

Keywords

Giant landslide Debris avalanche Volcanic island Database Atlantic Ocean 

Notes

Funding

Development of the giant landslides on oceanic island volcanoes database is supported by the Czech Science Foundation (CSF Project GJ16-12227Y), and the conceptual development research organization of the Institute of Rock Structure & Mechanics CAS (RVO 67985891).

References

  1. Ablay G, Hürlimann M (2000) Evolution of the north flank of Tenerife by recurrent giant landslides. J Volcanol Geotherm Res 103:135–159.  https://doi.org/10.1016/S0377-0273(00)00220-1 CrossRefGoogle Scholar
  2. Acosta J, Uchupi E, Muñoz A, Herranz P, Palomo C, Ballesteros M et al (2005) Geologic evolution of the Canarian Islands of Lanzarote, Fuerteventura, Gran Canaria, and La Gomera and comparison of landslides at these islands with those at Tenerife, La Palma, and El Hierro. In: Clift P, Acosta J (eds) Geophysics of the Canary Islands. Springer, Dordrecht, pp 1–40Google Scholar
  3. Ancochea E, Huerta M, Hernán F, Brändle J (2010) Volcanic evolution of São Vicente, Cape Verde Islands: the Praia Grande landslide. J Volcanol Geotherm Res 198:143–157.  https://doi.org/10.1016/j.jvolgeores.2010.08.016 CrossRefGoogle Scholar
  4. Becerril L, Galve J, Morales J, Romero C, Sánchez N, Martí J et al (2016) Volcano-structure of El Hierro (Canary Islands). J Maps 12:43–52.  https://doi.org/10.1080/17445647.2016.1157767 CrossRefGoogle Scholar
  5. Boudon G, Villemant B, Le Friant A, Paterne M, Cortijo E (2013) Role of large flank-collapse events on magma evolution of volcanoes. J Volcanol Geotherm Res 263:224–237.  https://doi.org/10.1016/j.jvolgeores.2013.03.009 CrossRefGoogle Scholar
  6. Bouysse P (1984) The Lesser Antilles island arc: structure and geodynamic evolution. Initial Reports of the Deep Sea Drilling Project, Volume LXXVIIIA, US Gov Printing Office, Washington, p 83–103.  https://doi.org/10.2973/dsdp.proc.78a. Available at http://deepseadrilling.org/78a/volume/dsdp78a_07.pdf
  7. Brunet M, Le Friant A, Boudon G, Lafuerza S, Talling P, Hornbach M et al (2016) Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochem Geophys Geosyst 17:699–724.  https://doi.org/10.1002/2015GC006034 CrossRefGoogle Scholar
  8. Carracedo JC, Troll V (2016) The geology of the Canary Islands. Elsevier, AmsterdamGoogle Scholar
  9. Carracedo JC, Rodríguez Badiola E, Guillou H, de la Nuez H, Pérez Torrado F (2001) Geology and volcanology of the western Canaries: La Palma and El Hierro. Estud Geol 57:171–295CrossRefGoogle Scholar
  10. Chevallier L, Verwoerd W (1987) A dynamic interpretation of Tristan da Cunha volcano, South Atlantic Ocean. J Volcanol Geotherm Res 34:35–49.  https://doi.org/10.1016/0377-0273(87)90091-6 CrossRefGoogle Scholar
  11. Costa A, Hildenbrand A, Marques F, Sibrant A, Santos de Campos A (2015) Catastrophic flank collapses and slumping in Pico Island during the last 130 kyr (Pico-Faial ridge, Azores Triple Junction). J Volcanol Geotherm Res 302:33–46.  https://doi.org/10.1016/j.jvolgeores.2015.06.008 CrossRefGoogle Scholar
  12. Costa A, Marques F, Hildenbrand A, Sibrant A, Catita C (2014) Large-scale catastrophic flank collapses in a steep volcanic ridge: the Pico-Faial ridge, Azores Triple Junction. J Volcanol Geotherm Res 272:111–125.  https://doi.org/10.1016/j.jvolgeores.2014.01.002 CrossRefGoogle Scholar
  13. Coussens M, Wall-Palmer D, Talling P, Watt S, Cassidy M, Jutzeler M et al (2016) The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: a long-term (>1 Ma) record offshore Montserrat, Lesser Antilles. Geochem Geophys Geosyst 17:2591–2611.  https://doi.org/10.1002/2015GC006053 CrossRefGoogle Scholar
  14. Crutchley G, Karstens J, Berndt C, Talling P, Watt S, Vardy ME et al (2013) Insights into the emplacement dynamics of volcanic landslides from high-resolution 3D seismic data acquired offshore Montserrat, Lesser Antilles. Mar Geol 335:1–15.  https://doi.org/10.1016/j.margeo.2012.10.004 CrossRefGoogle Scholar
  15. Dávila Harris P, Branney M, Storey M (2011) Large eruption-triggered ocean-island landslide at Tenerife: onshore record and long-term effects on hazardous pyroclastic dispersal. Geology 39:951–954.  https://doi.org/10.1130/G31994.1 CrossRefGoogle Scholar
  16. Day S, Heleno da Silva S, Fonseca J (1999) A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands. J Volcanol Geotherm Res 94:191–218.  https://doi.org/10.1016/S0377-0273(99)00103-1 CrossRefGoogle Scholar
  17. Day S, Llanes P, Silver E, Hoffmann G, Ward S, Driscoll N (2015) Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea. Mar Petrol Geol 67:419–438.  https://doi.org/10.1016/j.marpetgeo.2015.05.017 CrossRefGoogle Scholar
  18. Deplus C, Le Friant A, Boudon G, Komorowski J-C, Villemant B, Harford C et al (2001) Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc. Earth Planet Sci Lett 192:145–157.  https://doi.org/10.1016/S0012-821X(01)00444-7 CrossRefGoogle Scholar
  19. EMODNET (2017) European Marine Observation and Data Network. http://www.emodnet.eu/geoviewer. Last accessed 23 December 2017
  20. García-Casco A, Proenza J, Iturralde-Vinent M (2011) Subduction zones of the Caribbean: the sedimentary, magmatic, metamorphic and ore-deposit records. Geol Acta 9:217–224.  https://doi.org/10.1344/105.000001745 Google Scholar
  21. Gee M, Watts A, Masson D, Mitchell N (2001) Landslides and the evolution of l Hierro in the Canary Islands. Mar Geol 177:271–293.  https://doi.org/10.1016/S0025-3227(01)00153-0 CrossRefGoogle Scholar
  22. GMRT (2017) Global Multi-Resolution Topography v 3.4. http://www.marine-geo.org/tools/GMRTMapTool. Last accessed 23 December 2017
  23. Hards V (2009) Shaken, but not stirred: the 2004 eruption of the Tristan da Cunha volcano. Shima 3:16–32Google Scholar
  24. Harris P (1964) The volcanic eruption on Tristan da Cunha in 1961. Bull Volcanol 27:113–114.  https://doi.org/10.1007/BF02597515 CrossRefGoogle Scholar
  25. Holcomb R, Searle R (1991) Large landslides from oceanic volcanoes. Mar Geotechnol 10:19–32.  https://doi.org/10.1080/10641199109379880 CrossRefGoogle Scholar
  26. Hooft E, Nomikou P, Toomey D, Lampridou D, Getz M, Christopolou M-E et al (2017) Backarc tectonism, volcanism, and mass wasting shape seafloor morphology in the Santorini-Christiana-Amorgos region of the Hellenic Volcanic arc. Tectonophysics 712-713:396–414.  https://doi.org/10.1016/j.tecto.2017.06.005 CrossRefGoogle Scholar
  27. Hunt J, Jarvis I (2017) Prodigious submarine landslides during the inception and early growth of volcanic islands. Nat Commun 8:2061.  https://doi.org/10.1038/s41467-017-02100-3 CrossRefGoogle Scholar
  28. Hunt J, Wynn R, Talling P, Masson D (2013) Multistage collapse of eight western Canary Island landslides in the last 1.5 Ma: sedimentological and geochemical evidence from subunits in submarine flow deposits. Geochem Geophys Geosyst 14:2159–2181.  https://doi.org/10.1002/ggge.20138 CrossRefGoogle Scholar
  29. Hürlimann M, Martí J, Ledesma A (2004) Morphological and geological aspects related to large slope failures on oceanic islands, the huge La Orotava landslides on Tenerife, Canary Islands. Geomorphology 62:143–158.  https://doi.org/10.1016/j.geomorph.2004.02.008 CrossRefGoogle Scholar
  30. Karstens J, Crutchley G, Berndt C, Talling P, Watt S, Hühnerbach V et al (2013) Emplacement of pyroclastic deposits offshore Montserrat: insights from 3D seismic data. J Volcanol Geotherm Res 257:1–11.  https://doi.org/10.1016/j.jvolgeores.2013.03.004 CrossRefGoogle Scholar
  31. Klimeš J, Yepes J, Becerril L, Kusák M, Galindo I, Blahut J (2016) Development and recent activity of the San Andrés landslide on El Hierro, Canary Islands, Spain. Geomorphology 261:119–131.  https://doi.org/10.1016/j.geomorph.2016.02.018 CrossRefGoogle Scholar
  32. Krastel S, Schmincke H-U, Jacobs C, Rihm R, Le Bas T, Alibés B (2001) Submarine landslides around the Canary Islands. J Geophys Res Solid Earth 106:3977–3997.  https://doi.org/10.1029/2000JB900413 CrossRefGoogle Scholar
  33. Leat P, Day S, Tate A, Martin T, Owen M, Tappin D (2013) Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry. J Volcanol Geotherm Res 265:60–77.  https://doi.org/10.1016/j.jvolgeores.2013.08.013 CrossRefGoogle Scholar
  34. Leat P, Tate A, Tappin D, Day S, Owen M (2010) Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping. Mar Geol 275:110–126.  https://doi.org/10.1016/j.margeo.2010.05.001 CrossRefGoogle Scholar
  35. Le Bas T, Masson D, Holtom R, Grevemeyer I (2007) Slope failures of the flanks of the southern Cape Verde Islands. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp 337–345CrossRefGoogle Scholar
  36. Le Friant A, Ishizuka O, Boudon G, Palmer M, Talling P, Villemant B et al (2015) Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: first scientific drilling of submarine volcanic island landslides by IODP Expedition 340. Geochem Geophys Geosyst 16:420–442.  https://doi.org/10.1002/2014GC005652 CrossRefGoogle Scholar
  37. Longpré M, Chadwick J, Wijbrans J, Iping R (2011) Age of the El Golfo debris avalanche, El Hierro (Canary Islands): new constraints from laser and furnace 40Ar/39Ar dating. J Volcanol Geotherm Res 203:76–80.  https://doi.org/10.1016/j.jvolgeores.2011.04.002 CrossRefGoogle Scholar
  38. Masson D, Le Bas T, Grevemeyer I, Weinrebe W (2008) Flank collapse and large-scale landsliding in the Cape Verde Islands, off West Africa. Geochem Geophys Geosyst 9:1–16.  https://doi.org/10.1029/2008GC001983 CrossRefGoogle Scholar
  39. Masson D, Watts A, Gee M, Urgeles R, Mitchell N, Le Bas T et al (2002) Slope failures on the flanks of the western Canary Islands. Earth-Sci Rev 57:1–35.  https://doi.org/10.1016/S0012-8252(01)00069-1 CrossRefGoogle Scholar
  40. McGuire W (1996) Volcano instability: a review of contemporary themes. In: McGuire W, Jones A, Neuberg J (eds) Volcano instability on earth and other planets. Geological Society of London, Special Publication 110, Geological Society of London, London, Bath, p 1–23.  https://doi.org/10.1017/S0016756897216468
  41. Moscardelli L, Wood L (2008) New classification system for mass transport complexes in offshore Trinidad. Basin Res 20:73–98.  https://doi.org/10.1111/j.1365-2117.2007.00340.x CrossRefGoogle Scholar
  42. Paris R, Giachetti T, Chevalier J, Guillou H, Frank N (2011) Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogos volcano. Sediment Geol 239:129–145.  https://doi.org/10.1016/j.sedgeo.2011.06.006 CrossRefGoogle Scholar
  43. Ramalho R (2011) Building the Cape Verde Islands. Springer, BerlinCrossRefGoogle Scholar
  44. Ramalho R, Winckler G, Madeira J, Helffrich G, Hipólito A, Quartau R et al (2015) Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci Adv 1:e1500456.  https://doi.org/10.1126/sciadv.1500456 CrossRefGoogle Scholar
  45. Romagnoli C, Casalbore D, Chiocci F, Bosman A (2009a) Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally-controlled, bilateral flank instability. Mar Geol 262:1–13.  https://doi.org/10.1016/j.margeo.2009.02.004 CrossRefGoogle Scholar
  46. Romagnoli C, Kokelaar P, Casalbore D, Chiocci F (2009b) Lateral collapses and active sedimentary processes on the northwestern flank of Stromboli volcano, Italy. Mar Geol 265:101–119.  https://doi.org/10.1016/j.margeo.2009.06.013 CrossRefGoogle Scholar
  47. Sibrant A, Hildenbrand A, Marques F, Costa A (2015a) Volcano-tectonic evolution of the Santa Maria Island (Azores): implications for paleostress evolution at the western Eurasia-Nubia plate boundary. J Volcanol Geotherm Res 291:49–62.  https://doi.org/10.1016/j.jvolgeores.2014.12.017 CrossRefGoogle Scholar
  48. Sibrant A, Hildenbrand A, Marques F, Weiss B, Boulesteix T, Hübscher C et al (2015b) Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores). J Volcanol Geotherm Res 301:90–106.  https://doi.org/10.1016/j.jvolgeores.2015.04.011 CrossRefGoogle Scholar
  49. Silveira G, Stutzmann E, Davaille A, Montagner J-P, Mendes-Victor L, Sebai A (2006) Azores hotspot signature in the upper mantle. J Volcanol Geotherm Res 156:23–34.  https://doi.org/10.1016/j.jvolgeores.2006.03.022 CrossRefGoogle Scholar
  50. Travis Garmon W, Allen C, Groom K (2017) Geologic and tectonic background of the Lesser Antilles. In: Allen C (ed) Landscapes and landforms of the Lesser Antilles. Springer, Cham, pp 7–15CrossRefGoogle Scholar
  51. Urgeles R, Canals M, Baraza J, Alonso B, Masson D (1997) The most recent megalandslides on the Canary Islands: the El Golfo debris avalanche and the Canary debris flow, west El Hierro Island. J Geophys Res 102:20305–20323.  https://doi.org/10.1029/97JB00649 CrossRefGoogle Scholar
  52. Ward S, Day S (2001) Cumbre Vieja Volcano - potential collapse and tsunami at La Palma, Canary Islands. Geophys Res Lett 28:3397–3400.  https://doi.org/10.1029/2001GL013110 CrossRefGoogle Scholar
  53. Watt S, Talling P, Vardy M, Masson D, Henstock T, Hühnerbach V et al (2012) Widespread and progressive seafloor-sediment failure following volcanic debris avalanche emplacement: landslide dynamics and timing offshore Montserrat, Lesser Antilles. Mar Geol 323–325:69–94.  https://doi.org/10.1016/j.margeo.2012.08.002 CrossRefGoogle Scholar
  54. Weiss B, Hübscher C, Ludmann T (2015) The tectonic evolution of the southeastern Terceira Rift/Sao Miguel region (Azores). Tectonophysics 654:75–95.  https://doi.org/10.1016/j.tecto.2015.04.018 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering Geology, Institute of Rock Structure & MechanicsCzech Academy of SciencesPragueCzech Republic

Personalised recommendations