, Volume 14, Issue 4, pp 1457–1465 | Cite as

Seismic-induced rockfalls and landslide dam following the October 30, 2016 earthquake in Central Italy

  • Saverio Romeo
  • Lucio Di Matteo
  • Laura Melelli
  • Corrado Cencetti
  • Walter Dragoni
  • Andrea Fredduzzi
Recent Landslides


On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m3/s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m2, while the volume is around 70,000 m3. The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m3. Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities.


Rockfalls Seismic-induced landslide Landslide dam Nera River Central Italy earthquake 



Authors wish to thank the ERG Hydro (Production Unit) which kindly provided discharge data of Nera River.


  1. Allasia P, Manconi A, Giordan D, Baldo M, Lollino G (2013) ADVICE: a new approach for near-real-time monitoring of surface displacements in landslide hazard scenarios. Sensors 13:8285–8302. doi: 10.3390/s130708285 CrossRefGoogle Scholar
  2. ANSA (2016). Sisma, distacco massi da parete roccia. URL: [Last accessed: 2017.01.10, in Italian].
  3. Antonini G, Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2002) Surfaces deposits and landslide inventory map of the area affected by 1997 Umbria-Marche earthquakes. Boll Soc Geol It 1:843–853Google Scholar
  4. Barchi MR, Mirabella F (2009) The 1997–98 Umbria–Marche earthquake sequence: “geological” vs. “seismological” faults. Tectonophysics 476:170–179. doi: 10.1016/j.tecto.2008.09.013 CrossRefGoogle Scholar
  5. Carro M, De Amicis M, Luzi L, Marzorati S (2003) The application of predictive modeling techniques to landslides induced by earthquakes: the case study of the 26 September 1997 Umbria–Marche earthquake (Italy). Eng Geol 69:139–159. doi: 10.1016/S0013-7952(02)00277-6 CrossRefGoogle Scholar
  6. Cruden D M, Varnes D J (1996). Landslide types and processes. In: Landslides: investigation and mitigation, Turner A K, Shuster R L (Eds.). Transportation Research Board, Special reports. 247:36–75.Google Scholar
  7. Della Seta M, Melelli L, Pambianchi G (2017) Reliefs, intermontane basins and civilization in the Umbria-Marche Apennines: origin and life by geological consent. In: Soldati M, Marchetti M (eds) Landscapes and landforms of Italy. Springer ed, New York in press Google Scholar
  8. Desplanques H (1969). Campagnen ombriennes. Colin A, Paris, pp 283 Italian edition by Melelli A, 1975. Campagne umbre. Tipografia Guerra, Perugia, pp 461.Google Scholar
  9. Di Matteo L, Romeo S, Kieffer DS (2017) Rock fall analysis in an Alpine area by using a reliable integrated monitoring system: results from the Ingelsberg slope (Salzburg Land, Austria). Bull Eng Geol Environ 76(2): 413-420. doi: 10.1007/s10064-016-0980-5
  10. Gigli G, Casagli N (2013) Extraction of rock mass structural data from high resolution laser scanning products. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 89–94CrossRefGoogle Scholar
  11. Gigli G, Morelli S, Fornera S, Casagli N (2014) Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides 11:1–14. doi: 10.1007/s10346-012-0374-0 CrossRefGoogle Scholar
  12. Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy. Environ Manag 34(2):191–208. doi: 10.1007/s00267-003-0021-6 CrossRefGoogle Scholar
  13. Guzzetti F, Colin P, Stark CP, Salvati P (2005) Evaluation of flood and landslide risk to the population of Italy. Environ Manag 36(1):15–36. doi: 10.1007/s00267-003-0257-1 CrossRefGoogle Scholar
  14. Guzzetti F (2006). Landslide hazard and risk assessment. PhD thesis at Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität University of Bonn, Bonn, Germany. [Last accessed: 2017.01.12].
  15. INGV (2016). Summary report on the October 30, 2016 earthquake in central Italy Mw 6.5.  10.5281/zenodo.166238.
  16. Lucarini C. (2016). Discussione del disegno di legge n. 2567. Senato della Repubblica Italiana, XVII LEGISLATURA, 729ª Seduta. Resoconto stenografico, 23 Novembre 2016, p.19–21. [Last accessed: 2017.01.15, in Italian].
  17. Martino S, Prestininzi A, Romeo RW (2014) Earthquake-induced ground failures in Italy from a reviewed database. Nat Hazards Earth Syst Sci 14:799–814 814.10.5194/nhess-14-799-2014 CrossRefGoogle Scholar
  18. Mazzanti P, Bozzano F, Cipriani I, Prestininzi A (2015) New insights into the temporal prediction of landslides by a terrestrial SAR interferometry monitoring case study. Landslides 12:55–68. doi: 10.1007/s10346-014-0469-x CrossRefGoogle Scholar
  19. Melelli L, Cencetti C, Cecconi M, Faralli L, Vecchietti A, Pane V (2016) The hermitage of Cerbaiolo (Tuscany, Italy): stability conditions and geomorphological characterization. Environmental Earth Sciences 75(4):322. doi: 10.1007/s12665-015-5128-6 CrossRefGoogle Scholar
  20. Moore JR, Sanders JW, Dietrich WE, Glaser SD (2009) Influence of rock mass strength on the erosion rate of alpine cliffs. Earth Surf Process Landf 34:1339–1352. doi: 10.1002/esp.1821. CrossRefGoogle Scholar
  21. Piermattei S. (2013), Local farmers vs. environmental universalism: conflicts over nature conservation in the Parco Nazionale dei Monti Sibillini, Italy. In: After anthropocentrism? Environmental conflicts, social movements and power, Koensler A and Papa C (Eds.), Special section of the Journal of Political Ecology. 20: 255–341.Google Scholar
  22. Rochet L (1987) Application des modèles numériques de propagation à l'étude des éboulements rocheux. Bull Liaison Labo P et 150(151):84–95 (in French) Google Scholar
  23. Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (2016) CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. doi: 10.6092/INGV.IT-CPTI15
  24. Sass O, Wollny K (2001) Investigations regarding Alpine talus slopes using ground-penetrating radar (GPR) in the Bavarian Alps, Germany. Earth Surf Process Landforms 26:1071–1086. doi: 10.1002/esp.254 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics and GeologyUniversity of PerugiaPerugiaItaly

Personalised recommendations