pp 1–19 | Cite as

A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador)

  • John Soto
  • Jorge P. Galve
  • José Antonio Palenzuela
  • José Miguel Azañón
  • José Tamay
  • Clemente Irigaray
Original Paper


In the last several decades, population growth in the cities of the Andes has caused urban areas to expand into landslide-prone areas. Fatal landslides affecting urban settlements are especially frequent in cities located in the Neogene intramontane basins of the Andes. These basins have similar situations and include geographical and geological features that frequently generate ground instabilities. We studied the characteristics of the mass movements observed in these basins by carrying out a detailed analysis of four landslides that have occurred in the Loja Basin (Ecuador). This multi-method study integrated geophysical, geotechnical methods, mineralogical studies and analyses of precipitation time series. Our study characterizes the slope movements as active, slow-moving, complex earthslide earthflows. According to Differential GPS measurements, these landslides move at velocities of up to several metres per year. Electrical resistivity tomography profiles show that most of the landslides are mainly surficial. Time-series analyses of precipitation reveal that rainfall events that are not exceptionally intensive can reactivate these landslides. This characteristic and the development of these landslides on low-gradient slopes are explained using the results obtained from the geotechnical and mineralogical analyses. We find that the smectite clay minerals detected in the mobilized geological formations, combined with the tropical climate of the northern Andean region, induce the observed weak slope stability conditions. The conceptual model for the studied landslides may aid in assessing landslide-prone areas in Loja and other Neogene intramontane basins of the Andes and can help to mitigate the associated risks.


Landslides DGPS ERT Geotechnics Clay minerals Time-series analysis 


  1. ABEM (2010) Instruction Manual Terrameter SAS 4000/SAS 1000. ABEM Instrument AB, Sundbyberg 148 pp.Google Scholar
  2. Abidin HZ, Andreas H, Gumilar I, Fukuda Y, Pohan YE, Deguchi T (2011) Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat Hazards 59:1753–1771. doi:10.1007/s11069-011-9866-9 CrossRefGoogle Scholar
  3. Acar M (2010) Determination of strain accumulation in landslide areas with GPS measurements. Sci Res Essays 5:763–768Google Scholar
  4. Acar M, Ozludemir MT, Erol S, Celik R, Ayan T (2008) Kinematic landslide monitoring with Kalman filtering. Nat Hazards Earth Syst Sci 8:213–221. doi:10.5194/nhess-8-213-2008 CrossRefGoogle Scholar
  5. Alcántara-Ayala I, Oliver-Smith A (2014) ICL Latin-American network: on the road to landslide reduction capacity building. Landslides 11(2):315–318CrossRefGoogle Scholar
  6. Anbarasu K, Sengupta A, Gupta S, Sharma SP (2010) Mechanism of activation of the Lanta Khola landslide in Sikkim Himalayas. Landslides 7:135–147CrossRefGoogle Scholar
  7. Azañón JM, Azor A, Yesares J, Tsige M, Mateos RM, Nieto F, Delgado J, López-Chicano M, Martín W, Rodríguez-Fernández J (2010) Regional-scale high-plasticity clay-bearing formation as controlling factor on landslides in southeast Spain. Geomorphology 120:26–37. doi:10.1016/j.geomorph.2009.09.012 CrossRefGoogle Scholar
  8. Baoping WEN, Haiyang CHEN (2007) Mineral compositions and elements concentrations as indicators for the role of groundwater in the development of landslide slip zones: a case study of large-scale landslides in the Three Gorges area in China. Earth Sci Front 14(6):98–106CrossRefGoogle Scholar
  9. de Bari C, Lapenna V, Perrone A, Puglisi C, Sdao F (2011) Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata Region, southern Italy). Geomorphology 133(1):34–46CrossRefGoogle Scholar
  10. Benac Č, Arbanas Ž, Jurak V, Oštrić M, Ožanić N (2005) Complex landslide in the Rječina Valley (Croatia): origin and sliding mechanism. Bull Eng Geol Environ 64(4):361CrossRefGoogle Scholar
  11. Bichler A, Bobrowsky P, Best M, Douma M, Hunter J, Calvert T, Burns R (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides 1(1):29–40CrossRefGoogle Scholar
  12. Brückl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159. doi:10.1016/j.enggeo.2006.09.004 CrossRefGoogle Scholar
  13. Calcaterra S, Cesi C, Di Maio C, Gambino P, Merli K, Vallario M, Vassallo R (2012) Surface displacements of two landslides evaluated by GPS and inclinometer systems: a case study in southern Apennines, Italy. Nat Hazards 61:257–266. doi:10.1007/s11069-010-9633-3 CrossRefGoogle Scholar
  14. Colangelo G, Perrone A (2012) Geoelectrical tomography as an operative tool for emergency management of landslide: an application in Basilicata Region, Italy. Int J Geophys. doi:10.1155/2012/593268 Google Scholar
  15. Colangelo G, Lapenna V, Loperte A, Perrone A, Telesca L (2008) 2D electrical resistivity tomographies for investigating recent activation landslides in Basilicata Region (southern Italy). Ann Geophys 51:275–285Google Scholar
  16. Coltorti M, Brogi A, Fabbrini L, Firuzabadì D, Pieranni L (2011) The sagging deep-seated gravitational movements on the eastern side of Mt. Amiata (Tuscany, Italy). Nat Hazards 59:191–208. doi:10.1007/s11069-011-9746-3 CrossRefGoogle Scholar
  17. Cooper A (2008) The classification, recording, databasing and use of information about building damage caused by subsidence and landslides. Q J Eng Geol Hydrogeol 41:409–424. doi:10.1144/1470-9236/07-223 CrossRefGoogle Scholar
  18. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Special Report 247:36–75Google Scholar
  19. Dogan U, Oz D, Ergintav S (2013) Kinematics of landslide estimated by repeated GPS measurements in the Avcilar Region of Istanbul, Turkey. Stud Geophys Geod 57:217–232. doi:10.1007/s11200-012-1147-x CrossRefGoogle Scholar
  20. Erginal AE, Öztürk B, Ekinci YL, Demirci A (2009) Investigation of the nature of slip surface using geochemical analyses and 2-D electrical resistivity tomography: a case study from Lapseki area, NW Turkey. Environ Geol 58(6):1167CrossRefGoogle Scholar
  21. Galindo-Zaldívar J, Soto J, Ruano P, Tamay J, Lamas F, Guartán J, Azañón JM, Paladines A (2010) Geometría y estructuras de la cuenca neógena de Loja a partir de datos gravimétricos (Andes Ecuatorianos). Geogaceta 48:215–218Google Scholar
  22. Gili JA, Corominas J, Rius J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55:167–192CrossRefGoogle Scholar
  23. Gillot EJ (1986) Some clay-related problems in engineering geology in North America. Clay Miner 21:261–278CrossRefGoogle Scholar
  24. Giordan D, Allasia P, Manconi A, Baldo M, Santangelo M, Cardinali M, Corazza A, Albanese V, Lollino G, Guzzetti F (2013) Morphological and kinematic evolution of a large earthflow: the Montaguto landslide, southern Italy. Geomorphology 187:61–79. doi:10.1016/j.geomorph.2012.12.035 CrossRefGoogle Scholar
  25. Grana V, Tommasi P (2014) A deep-seated slow movement controlled by structural setting in marly formations of central Italy. Landslides 11:195–212. doi:10.1007/s10346-013-0384-6 CrossRefGoogle Scholar
  26. Hibert C, Grandjean G, Bitri A, Travelletti J, Malet JP (2012) Characterizing landslides through geophysical data fusion: example of the La Valette landslide (France). Eng Geol 128:23–29. doi:10.1016/j.enggeo.2011.05.001 CrossRefGoogle Scholar
  27. Hungerbühler D, Steinmann M, Winkler W, Sewards D, Egüez A, Peterson DE, Helg U, Hammer C (2002) Neogene stratigraphy and Andean geodynamics of southern Ecuador. Earth-Science Rev 57:75–124. doi:10.1016/S0012-8252(01)00071-X CrossRefGoogle Scholar
  28. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194CrossRefGoogle Scholar
  29. Ibadango C, Soto J, Tamay J, Escudero P, Porter M (2005) Mass movements in the Loja Basin—Ecuador, South America. Proceedings, Int Conf Landslide Risk Management. Vancouver 10:1–7Google Scholar
  30. Instituto Nacional de Investigación Geológico Minero y Metalúrgico (INIGEMM), (2013) Mapa de susceptibilidad por movimientos en masa del Ecuador, escala 1:1,000,000. Technical report. UnpublishedGoogle Scholar
  31. Irigaray C, Palenzuela JA (2013) Análisis de la actividad de movimientos de ladera mediante láser escáner terrestre en el suroeste de la Cordillera Bética (España) Landslide activity analysis using terrestrial laser scanning at southwest of the Betic Cordillera (Spain). Revista de Geología Aplicada a la Ingeniería y al Ambiente 31:53–67Google Scholar
  32. Irigaray C, Lamas F, El Hamdouni R, Fernández T, Chacón J (2000) The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21:65–81. doi:10.1023/A:1008126113789 CrossRefGoogle Scholar
  33. Jiang JW, Xiang W, Rohn J, Zeng W, Schleier M (2015) Research on water–rock (soil) interaction by dynamic tracing method for Huangtupo landslide, Three Gorges Reservoir, PR China. Environ Earth Sci 74(1):557–571CrossRefGoogle Scholar
  34. Kennerley JB (1980) Outline of the geology of Ecuador. Overseas Geol Miner Resour 55:17Google Scholar
  35. Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2003) High-resolution geolectrical tomographies in the study of Giarrossa landslide (southern Italy). Bull Eng Geol Environ 62:259–268. doi:10.1007/s10064-002-0184-z CrossRefGoogle Scholar
  36. Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. Geophysics 70:11–18. doi:10.1190/1.1926571 CrossRefGoogle Scholar
  37. Litherland M, Aspden JA, Jemielita RA (1994) The metamorphic belts of Ecuador. Brit Geol Surv 11:147Google Scholar
  38. Liu GY, Zhu YZ, Zhou RS (2005) A new approach of single epoch GPS positioning for landslide monitoring. Acta Seismol Sín 18:427–434. doi:10.1007/s11589-005-0020-1 CrossRefGoogle Scholar
  39. MacEwan DMC, Wilson MJ (1980) Interlayer and intercalation complexes of clay minerals. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification, Mineralogical Society Monograph 5. Mineralogical Society, London, p 197–248Google Scholar
  40. Malet JP, Maquaire O, Calais E (2002) The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43:33–54CrossRefGoogle Scholar
  41. Marocco R, Eguez A, Lavenu A, Noblet C, Baudino R, Winter T (1994) Las cuencas intramontanosas neogenas del Ecuador. Resúmenes de conferencias ORSTOM (Ecuador). Ediciones ORSTOM, Quito, pp 135–138Google Scholar
  42. Merritt AJ, Chambers JE, Murphy W, Wilkinson PB, West LJ, Gunn DA, Meldrum PI, Kirkham M, Dixon N (2014) 3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides 11(4):537–550CrossRefGoogle Scholar
  43. Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd, vol 378. Oxford university press, OxfordGoogle Scholar
  44. Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mazzinie E, Pesci A (2003) Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’di Malta landslide (northern Apennines, Italy). Eng Geol 68:103–121CrossRefGoogle Scholar
  45. Naudet V, Lazzari M, Perrone A, Loperte A, Piscitelli S, Lapenna V (2008) Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo Village (Basilicata, southern Italy). Eng Geol 98(3):156–167CrossRefGoogle Scholar
  46. Noferini L, Pieraccini M, Mecatti D, Macaluso G, Atzeni C, Mantovani M, Marcato G, Pasuto A, Silvano S, Tagliavini F (2007) Using GB-SAR technique to monitor slow moving landslide. Eng Geol 95:88–98. doi:10.1016/j.enggeo.2007.09.002 CrossRefGoogle Scholar
  47. Palenzuela JA, Jiménez-Perálvarez JD, El Hamdouni R, Alameda-Hernández P, Chacón J, Irigaray C (2015) Integration of LiDAR data for the assessment of activity in diachronic landslides: a case study in the Betic Cordillera (Spain). Landslides. doi:10.1007/s10346-015-0598-x Google Scholar
  48. Perrone A, Lapenna V, Piscitelli S (2014) Electrical resistivity tomography technique for landslide investigation: a review. Earth-Science Rev 135:65–82. doi:10.1016/j.earscirev.2014.04.002 CrossRefGoogle Scholar
  49. Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930. doi:10.1130/G33217.1 CrossRefGoogle Scholar
  50. Proyecto Multinacional Andino (PMA): Geociencias para las Comunidades Andinas (2007) Movimientos en masa en la Región Andina: Una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, Publicación Geológica Multinacional, No. 4, 432 p., 1 cd-romGoogle Scholar
  51. Regmi AD, Yoshida K, Dhital MR, Devkota K (2013) Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides 10(1):1–13CrossRefGoogle Scholar
  52. Rizzo V (2002) GPS monitoring and new data on slope movements in the Maratea Valley (Potenza, Basilicata). Phys Chem Earth 27:1535–1544. doi:10.1016/S1474-7065(02)00174-2 CrossRefGoogle Scholar
  53. Rowe PW, Barden L (1966) A new consolidation cell. Geotechnique 16(2):162–170CrossRefGoogle Scholar
  54. Sassa K (2004) The international consortium on landslides. Landslides 1(1):91–94CrossRefGoogle Scholar
  55. Sassa K (2012) ICL strategic plan 2012–2021 to create a safer geo-environment. Landslides 9(2):155–164CrossRefGoogle Scholar
  56. Sdao F, Pascale S, Rutigliano P (2005) Geomorphological features and monitoring of a large and complex landslide near Avigliano urban area (south Italy). Adv Geosci 2:97–101. doi:10.5194/adgeo-2-97-2005 CrossRefGoogle Scholar
  57. Shuzui H (2001) Process of slip-surface development and formation of slip-surface clay in landslides in Tertiary volcanic rocks, Japan. Eng Geol 61(4):199–220CrossRefGoogle Scholar
  58. Strauhal T, Zangerl C, Fellin W, Holzmann M, Engl DA, Brandner R, Tropper P, Tessadri R (2017) Structure, mineralogy and geomechanical properties of shear zones of deep-seated rockslides in metamorphic rocks (Tyrol, Austria). Rock Mech Rock Eng. doi:10.1007/s00603-016-1113-y Google Scholar
  59. Tagliavini F, Mantovani M, Marcato G, Pasuto A, Silvano S (2007) Validation of landslide hazard assessment by means of GPS monitoring technique – a case study in the dolomites (Eastern Alps, Italy). Nat Hazards Earth Syst Sci 7:185–193. doi:10.5194/nhess-7-185-2007 CrossRefGoogle Scholar
  60. Travelletti J, Malet JP, Hibert C, Grandjean G (2009) Integration of geomorphological, geophysical and geotechnical data to define the 3D morpho-structure of the La Valette mudslide, Ubaye Valley, French Alps. Proc Int Conf Landslide Process from geomorpho- Log Mapp to Dyn Model 203–208Google Scholar
  61. Wang GQ (2012) Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides 9(1):117–130CrossRefGoogle Scholar
  62. Wen BP, Duzgoren-Aydin NS, Aydin A (2004) Geochemical characteristics of the slip zones of a landslide in granitic saprolite, Hong Kong: implications for their development and microenvironments. Environ Geol 47(1):140–154CrossRefGoogle Scholar
  63. Yilmaz I, Karacan E (2002) A landslide in clayey soils: an example from the Kızıldag region of the Sivas-Erzincan Highway (Sivas-Turkey). Environ Geosci 9(1):35–42CrossRefGoogle Scholar
  64. Yin Y, Wang H, Gao Y, Li X (2010a) Real-time monitoring and early warning of landslides at relocated Wushan town, the Three Gorges Reservoir, China. Landslides 7(3):339–349CrossRefGoogle Scholar
  65. Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010b) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7(3):359–365CrossRefGoogle Scholar
  66. Zárate B (2011) Monitoreo de movimientos de ladera en el sector de San Pedro de Vilcabamba mediante procedimientos GPS. Maskana 2:17–25Google Scholar
  67. Zhou P, Zhou B, Guo J, Li D, Ding Z, Feng Y (2005) A demonstrative GPS-aided automatic landslide monitoring system in Sichuan Province. J Glob Position Syst 4:184–191. doi:10.5081/jgps.4.1.184 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • John Soto
    • 1
    • 2
  • Jorge P. Galve
    • 2
  • José Antonio Palenzuela
    • 3
  • José Miguel Azañón
    • 2
  • José Tamay
    • 1
  • Clemente Irigaray
    • 3
  1. 1.Departamento de Geología y Minas e Ingeniería CivilUniversidad Técnica Particular de LojaLojaEcuador
  2. 2.Departamento de Geodinámica, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Ingeniería Civil, ETSICCPUniversidad de GranadaGranadaSpain

Personalised recommendations