, Volume 14, Issue 3, pp 1275–1281 | Cite as

Establishment of a deformation forecasting model for a step-like landslide based on decision tree C5.0 and two-step cluster algorithms: a case study in the Three Gorges Reservoir area, China

  • Junwei Ma
  • Huiming TangEmail author
  • Xiao Liu
  • Xinli Hu
  • Miaojun Sun
  • Youjian Song
Technical Note


This study presents a hybrid approach based on two-step cluster and decision tree C5.0 algorithms to establish a deformation forecasting model for a step-like landslide. The Zhujiadian landslide, a typical step-like landslide in the Three Gorges Reservoir area, was selected as a case study. Approximately, 6 years of historical records of landslide displacement, precipitation, and reservoir level were used to build the forecasting model. The forecasting model consisted of seven comprehensive rules governing hydrologic parameters and their magnitudes and was developed to predict landslide deformation. This model was applied to rapidly forecast the likelihood of step-like landslide deformation resulting from rainfall and water level fluctuations in the Three Gorges Reservoir area. Given the satisfactory accuracy of the trained model, the presented approach can be used to establish forecasting models for step-like landslides and to facilitate rapid decision making.


Step-like landslide Deformation forecasting Two-step cluster Decision tree C5.0 Three Gorges Reservoir area 



Author Junwei Ma thanks the China Scholarship Council for providing a scholarship for the research described in this paper, which was conducted as a Visiting Research Scholar at Purdue University. This study was financially supported by the Key National Natural Science Foundation of China (41230637), the National Natural Science Foundation of China (41572279, 41272305, and 41102195), the China Postdoctoral Science Foundation (Grant Nos. 2012M521500 and 2014T70758), and the Hubei Provincial Natural Science Foundation of China (Grant No. 2014CFB901). All support is gratefully acknowledged.


  1. Bernardie S, Desramaut N, Malet JP, Gourlay M, Grandjean G (2014) Prediction of changes in landslide rates induced by rainfall. Landslides 12:481–494. doi: 10.1007/s10346-014-0495-8 CrossRefGoogle Scholar
  2. Cao Y, Yin KL, Alexander D, Zhou C (2016) Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides 13:725–736. doi: 10.1007/s10346-015-0596-z
  3. Chen MY (2011) Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert Syst Appl 38:11261–11272. doi: 10.1016/j.eswa.2011.02.173 CrossRefGoogle Scholar
  4. Chen SY, Wang W (2009) Decision tree learning for freeway automatic incident detection. Expert Syst Appl 36:4101–4105. doi: 10.1016/j.eswa.2008.03.012 CrossRefGoogle Scholar
  5. Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (eastern Pyrenees, Spain). Landslides 2:83–96. doi: 10.1007/s10346-005-0049-1 CrossRefGoogle Scholar
  6. Cortez P, Embrechts MJ (2013) Using sensitivity analysis and visualization techniques to open black box data mining models. Inf Sci 225:1–17. doi: 10.1016/j.ins.2012.10.039 CrossRefGoogle Scholar
  7. Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40:176–191. doi: 10.1139/t02-085 CrossRefGoogle Scholar
  8. Du J, Yin KL, Lacasse S (2013) Displacement prediction in colluvial landslides, three gorges reservoir, China. Landslides 10:203–218. doi: 10.1007/s10346-012-0326-8 CrossRefGoogle Scholar
  9. Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. Giornale di Geologia Applicata 1:41–52. doi: 10.1474/GGA.2005-01.0-05.0005 Google Scholar
  10. Green KC, Armstrong JS (2015) Simple versus complex forecasting: the evidence. J Bus Res 68:1678–1685. doi: 10.1016/j.jbusres.2015.03.026 CrossRefGoogle Scholar
  11. He KQ, Li XR, Yan XQ, Guo D (2008) The landslides in the three gorges reservoir region, China and the effects of water storage and rain on their stability. Environ Geol 55:55–63. doi: 10.1007/s00254-007-0964-7 CrossRefGoogle Scholar
  12. Hu XL, Zhang M, Sun MJ, Huang KX, Song YJ (2013) Deformation characteristics and failure mode of the Zhujiadian landslide in the three gorges reservoir, China. B ENG GEOL ENVIRON 74:1–12. doi: 10.1007/s10064-013-0552-x CrossRefGoogle Scholar
  13. Huang HF, Yi W, Lu SQ, Yi QL, Zhang GD (2014) Use of monitoring data to interpret active landslide movements and hydrological triggers in three gorges reservoir. J PERFORM CONSTR FAC C4014005. doi: 10.1061/(ASCE)CF.1943-5509.0000682
  14. Jensen U (2001) The simplicity of an earnings frontier. In: Zellner A, Keuzenkamp HA, McAleer M (eds) Simplicity, inference and modelling: keeping it sophisticatedly simple. Cambridge University Press, Cambridge, pp 277–291. doi: 10.1017/CBO9780511493164.016 Google Scholar
  15. Kalteh AM (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. COMPUT GEOSCI-UK 54:1–8. doi: 10.1016/j.cageo.2012.11.015 CrossRefGoogle Scholar
  16. Korup O, Stolle A (2014) Landslide prediction from machine learning. Geol Today 30:26–33. doi: 10.1111/gto.12034 CrossRefGoogle Scholar
  17. Li CD, Tang HM, Hu XL, Li DM, Hu B (2009) Landslide prediction based on wavelet analysis and cusp catastrophe. J EARTH SCI-CHINA 20:971–977. doi: 10.1007/s12583-009-0082-4 CrossRefGoogle Scholar
  18. Lian C, Zeng ZG, Yao W, Tang HM (2014) Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level. STOCH ENVIRON RES RISK ASSESS 28:1957–1972. doi: 10.1007/s00477-014-0875-6 CrossRefGoogle Scholar
  19. Lian C, Zeng ZG, Yao W, Tang HM (2015) Multiple neural networks switched prediction for landslide displacement. Eng Geol 186:91–99. doi: 10.1016/j.enggeo.2014.11.014 CrossRefGoogle Scholar
  20. Lian C, Zeng ZG, Yao W, Tang HM, Chen CL (2016) Landslide displacement prediction with uncertainty based on neural networks with random hidden weights. IEEE Trans Neural Netw Learn Syst 27:2683–2695. doi: 10.1109/TNNLS.2015.2512283 CrossRefGoogle Scholar
  21. Liu XY, Li P, Gao CH (2013) Symmetric extreme learning machine. Neural Comput Appl 22(3-4):551–558. doi: 10.1007/s00521-012-0859-8
  22. Liu Z, Shao J, Xu W, Chen H, Shi C (2014) Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. Landslides 11:889–896. doi: 10.1007/s10346-013-0443-z CrossRefGoogle Scholar
  23. Ma JW, Tang HM, Hu XL, Bobet A, Yong R, Ez Eldin MAM (2017a) Model testing of the spatial-temporal evolution of a landslide failure. B Eng Geol Environ 76:323-339. doi: 10.1007/s10064-016-0884-4 CrossRefGoogle Scholar
  24. Ma JW, Tang HM, Hu XL, Bobet A, Zhang M, Zhu TW, Song YJ, Ez Eldin MAM (2017b) Identification of causal factors for the Majiagou landslide using modern data mining methods. Landslides 14:311-322. doi: 10.1007/s10346-016-0693-7 CrossRefGoogle Scholar
  25. Mistikoglu G, Gerek IH, Erdis E, Mumtaz Usmen PE, Cakan H, Kazan EE (2015) Decision tree analysis of construction fall accidents involving roofers. Expert Syst Appl 42:2256–2263. doi: 10.1016/j.eswa.2014.10.009 CrossRefGoogle Scholar
  26. Neaupane KM, Achet SH (2004) Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Eng Geol 74:213–226. doi: 10.1016/j.enggeo.2004.03.010 CrossRefGoogle Scholar
  27. Pang SL, Gong JZ (2009) C5.0 classification algorithm and application on individual credit evaluation of banks. Syst Eng Theory Pract 29:94–104. doi: 10.1016/S1874-8651(10)60092-0 CrossRefGoogle Scholar
  28. Petley DN (2010) Landslide disaster mitigation in the three gorges reservoir, China. Mt Res Dev 30:184–185. doi: 10.1659/mrd.mm068 CrossRefGoogle Scholar
  29. Qin B, Xia Y, Li F (2009) DTU: a decision tree for uncertain data. In: Theeramunkong T, Kijsirikul B, Cercone N, Ho T-B (eds) Advances in knowledge discovery and data mining: 13th Pacific-Asia conference, PAKDD 2009. LNCS, vol. 5476. Springer, Heidelberg, pp 4–15. doi: 10.1007/978-3-642-01307-2_4 CrossRefGoogle Scholar
  30. Ren F, Wu XL, Zhang KX, Niu RQ (2014) Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the three gorges, China. Environ Earth Sci 73:4791–4804. doi: 10.1007/s12665-014-3764-x CrossRefGoogle Scholar
  31. Salciarini D, Godt J, Savage W, Conversini P, Baum R, Michael J (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria region of Central Italy. Landslides 3:181–194. doi: 10.1007/s10346-006-0037-0 CrossRefGoogle Scholar
  32. Wang FW, Zhang YM, Huo ZT, Matsumoto T, Huang BL (2004) The July 14, 2003 Qianjiangping landslide, three gorges reservoir, China. Landslides 1:157–162. doi: 10.1007/s10346-004-0020-6 CrossRefGoogle Scholar
  33. Wang FW, Zhang YM, Huo ZT, Peng XM, Araiba K, Wang GH (2008) Movement of the Shuping landslide in the first four years after the initial impoundment of the three gorges dam reservoir, China. Landslides 5:321–329. doi: 10.1007/s10346-008-0128-1 CrossRefGoogle Scholar
  34. Wu XL, Benjamin Zhan F, Zhang KX, Deng QL (2016) Application of a two-step cluster analysis and the Apriori algorithm to classify the deformation states of two typical colluvial landslides in the three gorges, China. Environ Earth Sci 75:1–16. doi: 10.1007/s12665-015-5022-2 CrossRefGoogle Scholar
  35. Xia M, Ren GM, Ma XL (2013) Deformation and mechanism of landslide influenced by the effects of reservoir water and rainfall, three gorges, China. Nat Hazards 68:467–482. doi: 10.1007/s11069-013-0634-x CrossRefGoogle Scholar
  36. Xu Q, Liu HX, Ran JX, Li WH, Sun X (2016) Field monitoring of groundwater responses to heavy rainfalls and the early warning of the Kualiangzi landslide in Sichuan Basin, southwestern China. LANDSLIDES: Online First. doi: 10.1007/s10346-016-0717-3 Google Scholar
  37. Yao W, Zeng ZG, Lian C, Tang HM (2015) Training enhanced reservoir computing predictor for landslide displacement. Eng Geol 188:101–109. doi: 10.1016/j.enggeo.2014.11.008 CrossRefGoogle Scholar
  38. Zhang XY, Jiang H, Jin JX, Xu XH, Zhang QX (2012) Analysis of acid rain patterns in northeastern China using a decision tree method. Atmos Environ 46:590–596. doi: 10.1016/j.atmosenv.2011.03.004 CrossRefGoogle Scholar
  39. Zhou C, Yin KL, Cao Y, Ahmed B (2016) Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the three gorges reservoir, China. Eng Geol 204:108–120. doi: 10.1016/j.enggeo.2016.02.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Junwei Ma
    • 1
    • 2
  • Huiming Tang
    • 1
    • 3
    Email author
  • Xiao Liu
    • 1
  • Xinli Hu
    • 3
  • Miaojun Sun
    • 4
  • Youjian Song
    • 5
  1. 1.Three Gorges Research Center for Geo-hazards of Ministry of EducationChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.School of Civil EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Faculty of EngineeringChina University of GeosciencesWuhanPeople’s Republic of China
  4. 4.Power China Huadong Engineering Corporation LimitedHangzhouPeople’s Republic of China
  5. 5.Wuhan Geotechnical Engineering and Surveying Co. LtdWuhanPeople’s Republic of China

Personalised recommendations