Advertisement

Landslides

, Volume 14, Issue 5, pp 1633–1653 | Cite as

Massive rock slope failure in Central Switzerland: history, geologic–geomorphological predisposition, types and triggers, and resulting risks

  • Beat Keller
Original Paper

Abstract

The basis of this article about landslides from massive rock slope failures (MRSFs) in the northern part of the Lake Lucerne area in Central Switzerland is a newly collected inventory of 25 mass-transport deposits (MTDs) within an area of 251 km2. Clearly dependent on the geologic–geomorphic predisposition, the pertaining processes are to be classified either as rock irregular slides originating from steep rock cliffs or as rock planar slides moving along dip slopes. All the investigated large-scale MTDs with spatial extents from 0.1 up to 14.6 km2 demonstrate excessive runout distances, especially the deposits associated with rock planar slides. Many of the MRSF are composite, by rock fragmentation into rock avalanches. Some of the mass transport processes involve cascades of events, including debris slides and debris flows. One MRSF was triggered by an earthquake and is thus considered a spontaneous event, whereas another two might be related to a cluster of strong seismic activity. The remaining MTDs cannot be assigned to identifiable triggers, except the Goldau rock slide in the aftermath of a period of heavy rainfall. The MTD inventory of the investigation area is assumed to be incomplete and suggests a low probability of large to very large events; it indicates high hazard ratings, should an event occur. A biasing towards larger and younger events is demonstrated. The M–F plot derived from the inventory, with magnitudes expressed as affected areas, shows two separate populations, distinguished by the occurrence (or absence) of rock avalanches. Using a statistical approach, the hazard associated with MRSF within the study area was rated as high. The societal risks emerging from the examined MRSF would nowadays be classified as unacceptable, especially if the massive spatial impact of rock avalanches is considered.

Keywords

Landslide hazards and risk analysis Massive rock slope failure Rock planar slides Rock irregular slides MTD 

Notes

Acknowledgments

The author gratefully acknowledges comments and review of the manuscript by Simon Gautschi from Westrek Geotechnical Services Ltd. (Kamloops, British Columbia/Canada) and by Marco Billia and Ivo Schwenk from Keller + Lorenz AG (Luzern). This also includes Michael Hilbe and Flavio Anselmetti (University of Berne) for the DTM data for the Chrüztrichter basin of Lake Lucerne. I also thank the anonymous reviewers for their comments and constructive inputs on earlier draft of this paper.

References

  1. Arbenz P (1913) Bericht über die Exkursion der Schweizerischen Geologischen Gesellschaft in die Obwaldner Alpen vom 10.-13. September 1913. Eclogae Geol Helv 12(5):689–721Google Scholar
  2. Australian Geomechanics Society Landslide working Group (2007a) Guideline for landslide susceptibility, hazard and risk zoning for landslide use planning. Aust Geomechanics J 42(1):13–36Google Scholar
  3. Australian Geomechanics Society Landslide working Group (2007b) Commentary on guideline for landslide susceptibility, hazard and risk zoning for landslide use planning. Aust Geomechanics J 42(1):37–62Google Scholar
  4. Australian Geomechanics Society Landslide working Group (2007c) Commentary on practice note guidelines for landslide risk management. Aust Geomechanics J 42(1):115–158Google Scholar
  5. Blikra LH, Longva, O, Braathe A, Anda E, Dehls JF, Stalsberg K (2006) Rock slope failures in Norwegian Fjord area: examples, spatial distribution and temporal pattern. In: Evans SG, Scarascia Mugnozza G, Strom A (eds) Landslides from massive rock slope failure. NATO Sci S IV Ear En 49, Springer Netherlands, pp 475–496Google Scholar
  6. Bornhold BD, Thomson RE (2012) Tsunami hazard assessment related to slope failures in coastal waters. In: Claque JJ, Stead D (eds) Landslides. Types, mechanisms and modelling. Cambridge Univ. Press, Cambridge, pp 108–120CrossRefGoogle Scholar
  7. Buck PD (1921) Stürzende, gleitende und fliessende Gesteinsbewegungen in der Schweiz. –Jahresber. Stiftschule Maria-Einsiedeln, Studienjahr 1920/21, Verlagsanstalt Benziger & Co AG, EinsiedelnGoogle Scholar
  8. Bussmann F, Anselmetti FS (2010) Rossberg landslide history and flood chronology as recorded in Lake Lauerz sediments (Central Switzerland). Swiss J Geosci 103(1):43–59CrossRefGoogle Scholar
  9. BUWAL (1996) Beurteilungskriterien I zur Störfallverordnung StFV–Richtlinien für Betriebe mit Stoffen, Erzeugnissen oder Sonderabfällen. Bundesamt für Wald und Landschaft, BernGoogle Scholar
  10. Buxtorf A (1916) Erläuterungen zur geologischen Karte der Rigihochfluhkette in 1:25′000. Geol Karte Schweiz 14, Geol Komm, A. Francke, Bern, Emil Birkhäuser BaselGoogle Scholar
  11. Buxtorf A, Tobler A, Niethammer G, Baumberger E, Arbenz P, Staub W (1916) Geologische Vierwaldstättersee-Karte 1:50′000. Spezialkarte Nr. 66a. Schweiz. geol. KommGoogle Scholar
  12. Clague JJ (2015) Paleolandslides. In: Shroder JF, Davies T (eds) Landslide hazards, risks, and disaster. Hazard and disaster series. Elsevier, Amsterdam, Oxford, pp 321–345CrossRefGoogle Scholar
  13. Corominas J, van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Herva’s J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. B Eng Geol Environ 73:209–263Google Scholar
  14. Cossart E, Braucher R, Fort M, Bourlès DL, Car Caillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26CrossRefGoogle Scholar
  15. Cruden DJ, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides, investigation and mitigation. Tans Res B247, 36–75Google Scholar
  16. Davies T (2015) Landslide hazards, risks, and disasters. Introduction. In: Shroder JF, Davies T (eds) Landslide hazards, risks, and disaster. Hazard and disaster series. Elsevier, Amsterdam, Oxford, pp 1–16Google Scholar
  17. Davies T, McSaveney M (2012) Mobility of long-runout rock avalanches. In: Claque JJ, Stead D (eds) Landslides. Types, mechanisms and modelling. Cambridge Univ. Press, Cambridge, pp 50–58CrossRefGoogle Scholar
  18. Dussauge C, Grasso JR, Helmstetter A (2003) Statistical analysis of rockfall volume distributions: implications for rockfall dynamics. J Geophys Res 108(B6):2286 ETG 2-1 to 2-11CrossRefGoogle Scholar
  19. Estoppey DJ (1994) Der Bergsturz vom Kernwald (NW/OW) und die Geologie seiner Umgebung. Unpubl. Diplomarbeit ETH ZürichGoogle Scholar
  20. Evans SG (2006) Single-event landslides resulting from massive rock slope failure: characterising their frequency and impact on society. In: Evans SG, Scarascia Mugnozza G, Strom A (eds) Landslides from massive rock slope failure. NATO Sci S IV Ear En 49, Springer Netherlands, pp 53–73Google Scholar
  21. Evans SG, Scarascia Mugnozza G, Strom AL, Hermanns RL, Ischuk A, Vinnichenko S (2006) Landslides from massive rock slope failure and associated phenomena. In: Evans SG, Scarascia Mugnozza G, Strom A (eds) Landslides from massive rock slope failure. NATO Sci S IV Ear En 49, Springer Netherlands, pp 3–52Google Scholar
  22. Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272CrossRefGoogle Scholar
  23. Fell R, Ho KKS, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management. State of the Art Paper # 1. In: Hungr O, Fell R, Couture R, Eberhardt E (eds.) Landslide risk management. Proceedings, Vancouver Conference. Taylor and Francis Group, London, pp 3–25Google Scholar
  24. Finlay PJ, Mostyn GR, Fell R (1999) Landslide risk assessment: prediction of travel distance. Can Geotech J 36:556–562CrossRefGoogle Scholar
  25. Flageollet JC (1996) The time dimension in the study of mass movements. Geomorphology 15:185–190CrossRefGoogle Scholar
  26. Flüeler E (2011) Berge entstehen – Berge vergehen. hep verlag ag, BernGoogle Scholar
  27. GEO Hong Kong Government (1998) Landslides and boulder falls from natural terrain: Interim risk guidelines. Geotechnical Engineering Office, Civil Engineering Department, GEO Report 75, Hong KongGoogle Scholar
  28. Gretener PE (1967) The significance of the rare event in geology. Am Assoc Petr Geol B 51(11):2197–2206Google Scholar
  29. Gruner U (2006) Bergstürze und Klima in den Alpen: Gibt es Zusammenhänge? B angew Geol 11(2):25–34Google Scholar
  30. Hantke R (1980) Eiszeitalter. V 2. Ott Verlag AG, ThunGoogle Scholar
  31. Heim A (1932) Bergsturz und Menschenleben. Fretz & Wasmuth Verlag AG, ZürichGoogle Scholar
  32. Hilbe M, Anselmetti FS (2015) Mass movement-induced tsunami hazard on perialpine Lake Lucerne (Switzerland): scenarios and numerical experiments. Pure Appl Geophys 172:545–568CrossRefGoogle Scholar
  33. Hilbe M, Anselmetti FS, Eilertsen RS, Hansen L, Wildi W (2011) Subaqueous morphology of Lake Lucerne (Central Switzerland): implications for mass movements and glacial history. Swiss J Geosci 104:425–443CrossRefGoogle Scholar
  34. Hoek E, Bray JW (1981) Rock slope engineering. Institution of Mining and Metallurgy, LondonGoogle Scholar
  35. Hoek E, Brown ET (1997) Practical estimates or rock mass strength. Int J Rock Mech Min 34:1165–1186CrossRefGoogle Scholar
  36. Hsü KJ (1975) Catastrophic debris streams (Sturzstroms) generated by rock falls. Geol Soc Am Bull 86(1):129–140CrossRefGoogle Scholar
  37. Huber A (1982) Felsbewegungen und Uferabbrüche an Schweizer Seen. Eclogae Geol Helv 75(3):563–578Google Scholar
  38. Hungr O (2006) Rock avalanche occurrence, processes and modelling. In: Evans SG, Scarascia Mugnozza G, Strom A (eds) Landslides from massive rock slope failure. NATO Sci S IV Ear En 49, Springer Netherlands, pp 243–266Google Scholar
  39. Hungr O, Wong HN (2007) Landslide risk acceptability criteria: are F-N plots objective? Geotech News 25(4):3–6Google Scholar
  40. Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanisms, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberthardt E (eds) Landslide Risk Management. Taylor and Francis, London, pp 99–128Google Scholar
  41. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194CrossRefGoogle Scholar
  42. Hutchinson JN (2006) Massive rock slope failure: perspectives and retrospectives an state-of-the-art. In: Evans SG, Scarascia Mugnozza G, Strom A (eds) Landslides from massive rock slope failure. NATO Sci S IV Ear En 49, Springer Netherlands, pp 619–660Google Scholar
  43. Keckermann B (1611) Contemplano gemina prior, ex generali physica de loco altera, ex speciali de terrae motu: Potissimum ilio stipend, qui fuit Anno 1601, mense Septembri. Scripta à Bartholomaeo Keckermanno et nunc tertio edita. Hanoviae. Apud Guilielmum Antonium. MDCXIGoogle Scholar
  44. Keller B (2007) So entstand der Vierwaldstättersee. In: Stadelmann P (ed) Vierwaldstättersee. Brunner Verlag, Kriens, pp 30–53Google Scholar
  45. Keller B (2012) Facies of Molasse based on a section across the central part of the Swiss plateau. Swiss B angew Geol 17(2):3–19Google Scholar
  46. Keller B (2017) Lake Lucerne and its spectacular environment. In: Reynard E (ed) Landscapes and landforms of Switzerland. Springer, BerlinGoogle Scholar
  47. Kopp J (1971) Geologie. In: Rigi, Königin der Berge. Jubiläumsschrift zur Hundertjahrfeier der Vitznau-Rigi-Bahn. Hallwag AG, Bern, pp 27–39Google Scholar
  48. Kremer K, Hilbe M, Simpson G, Decrouy L, Wildi W, Girardclos S (2015) Reconstructing 4000 years of mass movement and tsunami history in a deep peri-Alpine lake (Lake Geneva, France-Switzerland). Sedimentology 62(5):1305–1327CrossRefGoogle Scholar
  49. Lateltin O, Haemmig C, Raetzo H, Bonnard C (2005) Landslide risk management in Switzerland. Landslides 2:313–320CrossRefGoogle Scholar
  50. Markland JT (1972) A useful technique for estimating the stability of rock slopes when the rigid wedge type of failure is expected. Imperial College Rock Mechanics Research Report No. 19Google Scholar
  51. McColl ST (2015) Landslide causes and triggers. In: Shroder JF, Davies T (eds) Landslide hazards, risks, and disaster. Hazard and disaster series. Elsevier, Amsterdam, Oxford, pp 17–42CrossRefGoogle Scholar
  52. Meili RB (1982) Untersuchungen zur Bodenentwicklung im Bergsturzgebiet des Rossbergs. Unpubl. diploma thesis. Geograph Institut Univ. ZürichGoogle Scholar
  53. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Verlag Paul Haupt, Bern, Stuttgart, WienGoogle Scholar
  54. Pfyffer K (1858) Der Kanton Luzern. Historisch-geographisches Gemälde der Schweiz, 3/1, Huber und Comp, St. Gallen/BernGoogle Scholar
  55. Rocscience Inc. (2007) RocLab. Rock mass strength analysis using the Hoek–Brown failure criterion. Toronto, Ontario, Retrieved on July, 2016 from www.rocscience.com
  56. Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA (2006) 15,000 Years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards. Eclogae Geol Helv 99:409–428CrossRefGoogle Scholar
  57. Schwarz-Zanetti G, Deichmann N, Fäh D, Giardini D, Jimenez MJ, Masciadri V, Schibler R, Schnellman M (2003) The earthquake in Unterwalden on September 18, 1601: a historic-critical macroseismic evaluation. Eclogae Geol Helv 96:441–450Google Scholar
  58. Selby MJ (1993) Hillslope materials and processes. Oxford University Press, OxfordGoogle Scholar
  59. Shanmugam G (2015) The landslide problem. J Palaeogeography 4(2):109–166CrossRefGoogle Scholar
  60. Strasser M, Anselmetti FS, Fäh D, Giardini D, Schnellmann M (2006) Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology 34(12):1005–1008CrossRefGoogle Scholar
  61. Strom A (2006) Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling. In: Evans SG, Scarascia Mugnozza G, Strom A (eds) Landslides from massive rock slope failure. NATO Sci S IV Ear En 49, Springer Netherlands, pp 305–326Google Scholar
  62. Thuro K, Hatem M (2010) The 1806 Goldau landslide event—analysis of a large rock slide. In: Williams AL, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Geologically active: Proceedings of the 11th IAEG Congress. Auckland, New Zealand, 5–10 September 2010. Taylor & Francis Group, London, pp 3693–3700Google Scholar
  63. Thuro K, Berner C, Eberhard E (2006) Der Bergsturz von Goldau 1806 – Was wissen wir 200 Jahre nach der Katastrophe? Swiss B angew Geol 11(2):13–24Google Scholar
  64. Trümpy R (1998) Tectonic units of Central Switzerland: their interpretation from A.D. 1708 to the present day. Swiss B angew Geol 2(2):163–182Google Scholar
  65. Zehnder JN (1988) Der Goldauer Bergsturz. Seine Zeit und sein Niederschlag. Verlag Stiftung Bergsturzmuseum GoldauGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Keller + Lorenz AGLuzernSwitzerland

Personalised recommendations